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Abstract

This paper deploys a recently proposed, biologically inspired, on-line, search-based optimization technique called Selective

Evolutionary Generation Systems (SEGS) for control purposes; here, to evolve Micro Air Vehicle (MAV) flapping wing gaits

in changing flight conditions to maintain hovering flight and track trajectories in unsteady airflow. The SEGS technique has

several advantages, including: (1) search-efficiency, by optimally trading off prior search space information for search effort

savings as quickly as possible in dynamic environments; (2) model-independence, as in biology, avoiding biases induced by

built-in models rendered incorrect by environment changes; and (3) resilience, through sufficiency for stochastic behavior that

is itself sufficient for responsiveness to search-objective variations caused by environment fluctuations. This work presents the

first approach that can simultaneously evolve optimal MAV flapping wing gaits efficiently and resiliently, adapt on-line, and, via

model-independence, allow feedback from either experimental sensors or alternate external models (affording control versatility

for hover or forward flight, unsteady or quasi-steady aerodynamics, and any dynamics or wing kinematics). Performance

benchmarks are also provided. Because the (1+1)-Evolution Strategy (ES) and the Canonical Genetic Algorithm with Fitness

Proportional Selection (CGAFPS) are two SEGS special extreme cases, an additional comparison showcases SEGS possession

of both (1+1)-ES computational speed and CGAFPS resilience.

Highlights

1. A bioinspired, search-efficient, tunable optimization scheme is adapted for control.

2. Micro Air Vehicle (MAV) flapping wing gaits are evolved on-line, model-independently.

3. Scheme properties are benchmarked in a case study of evolution for MAV hover control.

4. Scheme speed and responsiveness compare favorably to related evolutionary methods.

5. A second study attains MAV trajectory control in unsteady flow with little computing.

Keywords: Micro Air Vehicles (MAVs), flapping wing gait evolution, selective evolutionary generation, hovering flight,

trajectory tracking

1. Introduction

Flapping wing flight is a promising enabling technology for Micro Air Vehicles (MAVs), which are aircraft of maximal

dimension less than 15 cm flying at airspeeds around 10 m/s (Shyy et al., 2008). Compared to their fixed wing and rotary wing

brethren, flapping wing MAVs can accomplish reconnaissance, surveillance, engagement, or environmental monitoring tasks

at lower airspeeds and with greater maneuverability and quietness. Examples of prototype flapping wing MAVs include Conn

et al. (2006), Wood (2008), Yang et al. (2009), Fenelon (2009), De Croon et al. (2009), Keennon et al. (2012), and Arabagi et al.

(2012).

Varying a flapping wing gait changes MAV lift and maneuverability, and mission phases may dictate the suitability, or

fitness, of a particular flapping wing gait. For instance, an MAV may scout a target by favoring a hovering form of flapping

flight, engage the target after increasing the fitness of descending flapping wing gaits, and then quickly escape after deeming

ascending gaits to be the most fit. External environment variations within each mission phase, like wind gusts and direction

fluctuations, can also affect MAV lift and thus constantly perturb flapping wing gait fitness. The small size of an MAV makes
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it particularly susceptible to physical or environmental perturbations, necessitating continual fitness maximization through

corresponding variations of the flapping wing gait to ensure altitude attainment and forward-flight trajectory tracking.

Current optimization of a flapping wing gait at low Reynolds number requires multiple iterations of computationally expen-

sive three-dimensional flow simulations on multiple processors taking hours or days to complete (Trizila et al., 2008; Persson

et al., 2010; Nielsen and Diskin, 2013; Vandenheede et al., 2014; Gogulapati et al., 2014) depending on the desired fidelity

(Vandenheede et al., 2014). Moreover, these simulations are based on flow model physics for which open issues still persist

(Shyy et al., 2010). Thus, there is a need for on-line, i.e., real-time, MAV control approaches to maximize the fitness of flapping

wing gaits during flight. This paper focuses on such on-line control and optimization, and is based on preliminary results from

the doctoral dissertation of Menezes (2010).

1.1. Related Work

Comprehensive reviews of the dynamics and control literature applicable to flapping wing MAVs are available in Orlowski

and Girard (2012) and Taha et al. (2012). The seminal works of Ellington (1984) and Ellington et al. (1996) pointed out that

unsteady aerodynamic mechanisms are responsible for insect flight, with implications for MAVs as documented in Ellington

(1999). But it is quasi-steady/blade-element aerodynamic models that are often deployed in flapping wing MAV control studies,

for reasons of computational efficiency (Orlowski and Girard, 2012). Examples include Khan and Agrawal (2005) that is

utilized in Khan and Agrawal (2007) to construct a differential flatness based controller, Deng et al. (2006b) that is the basis

for the LQR technique in Deng et al. (2006a) (although Orlowski and Girard (2012) notes that it is possible to implement other

aerodynamic models with the presented dynamics), and the experimentally derived aerodynamic model in Sane and Dickinson

(2001) that is used to drive the control simulation in Doman et al. (2010).

If unsteady aerodynamic theory is desired, then a relevant model is the rigid airfoil work of Theodorsen (1935) that examined

lift and that was extended in Garrick (1936) to predict the horizontal thrust force generated by a flapping airfoil. An empirical

state-space representation of Theodorsen (1935) was developed and utilized in Brunton and Rowley (2013) to robustly track a

reference lift coefficient and reject gust disturbances. An alternative aerodynamic approach to that of unsteady or quasi-steady

aerodynamics is that of surrogate modeling as described in Trizila et al. (2008).

Contemporary control-theoretic (Yan et al., 2001; Schenato, 2003; Lin et al., 2010; Ratti et al., 2011; Pérez-Arancibia et al.,

2013; Duhamel et al., 2013; Caetano et al., 2013) and neurobiological (Weng et al., 2007; Chung and Dorothy, 2010) approaches

to MAV flapping wing gait regulation exploit dynamical system models and experiments to improve performance. Hovering

flight is the typical mode of flapping wing MAV operation in these cases, and there are few works that address the problem

of forward-flight trajectory tracking. Menezes (2010) described the first high-fidelity simulation of forward-flight trajectory

control of a flapping wing MAV in unsteady airflow, which is control that was achieved by indirect simultaneous lift and

thrust modification using Theodorsen (1935) and Garrick (1936). More recently, Malhan et al. (2012) looked at experimental

forward flight performance, Mahjoubi and Byl (2013) decoupled flapping wing MAV lift and thrust using a motion controller

that modified mechanical impedance properties of the wings rather than their stroke characteristics, and Goppert et al. (2014)

considered how to verify and validate a trajectory tracking controller that was subject to disturbances.

1.1.1. Evolutionary Approaches, On-line Adaptive Approaches, and Model-Independent Approaches

Early exploratory works applying evolutionary computation to flapping wing MAVs include Augustsson et al. (2002), Salles

and Schiele (2004), Milano and Gharib (2005), Hunt et al. (2005), Van Breugel and Lipson (2005), Regan et al. (2006), Mouret

et al. (2006), Shim and Kim (2006), de Margerie et al. (2007), Boddhu and Gallagher (2010), and Roberts et al. (2010). In the

following years, Olhofer et al. (2011) suggested a way to combine evolutionary algorithms with physical measurements to facil-

itate the experimental evaluation of flapping wing optimization solutions, Doncieux and Hamdaoui (2011) used multi-objective

evolutionary algorithms to generate a set of Pareto optimal controllers for further study, Gallagher and Oppenheimer (2012) put

forward an ‘Evolvable and Adaptive Hardware (EAH) oscillator that will replace a traditional oscillator inside a conventionally

defined flight controller with the goal of restoring whole-system control efficacy in the face of damage to the vehicle’ by provid-

ing the ‘ability to correct for vehicle anomalies via flight control adjustment in-flight and while conducting normal missions,’

and Gallagher (2013) posited an evolutionary algorithm to allow swarms of flapping wing MAVs to cooperatively and quickly

find and correct common and uncommon MAV damages in the swarm.

The latter two references represent the first progress towards control schemes that are on-line, adaptive and capable of

handling internal and externally-induced parameter variations. Gallagher et al. (2014) proceeds further along these lines by

considering ‘adaptive learning [that] is used to simultaneously produce fault-correcting solutions as well as testable hypotheses

that can be used to identify areas of inconsistency between the adapted system and its model,’ which can then be corrected.

Recently, Pérez-Arancibia et al. (2015) came out with a model-independent experimental method to find a control strategy

for achieving stable hovering flight of a flapping wing MAV. But the present paper remains the only work that simultaneously

is an evolutionary approach to MAV flapping wing gait optimization, is capable of on-line adaptation, is model-independent in

a way that allows it to obtain feedback from experimental sensors or from other external models acting in the place of sensors

(which thereby afford a versatile control capacity to the MAV that can deal with hover, forward-flight, aerodynamics that are
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chosen to be unsteady or quasi-steady, and any dynamics or wing kinematics), and is a process that is optimally search-efficient

and also resilient to environmental or internal-parameter fluctuations. The motivation for, and importance of, all of these

concepts is explained next.

1.2. The Motivation for Model-Independence

Although the flapping wing gait regulation techniques in Yan et al. (2001), Schenato (2003), Deng et al. (2006a), Weng et al.

(2007), Chung and Dorothy (2010), Doman et al. (2010), Lin et al. (2010), Ratti et al. (2011), Pérez-Arancibia et al. (2013),

Duhamel et al. (2013), and Caetano et al. (2013) can control a flapping wing MAV, the approaches are model-dependent; that is,

these strategies harness knowledge of MAV dynamics and are tailored to defined narrow ranges of MAV parameters to guarantee

robustness and disturbance-rejection properties. However, because of the small size of an MAV, its dynamics and parameters

can vary drastically with payload gain or loss, traversal in constricted or open spaces, and particulate or droplet deposition

that increases weight or asymmetrically affects flapping. Therefore, an MAV cannot have its parameter ranges limited by a

control strategy during each mission objective or scenario if it is to have sufficient freedom to respond to all possible physical

or environmental perturbations. Any attempt to augment control-theoretic techniques and their predefined parameter ranges

with adaptive observers and estimators to account for perturbations or to deal with unsteady airflow complications only serves

to increase MAV computational load. Further, the traditional computationally-inexpensive on-line solution of a stored lookup

table robs an MAV of flexibility in its response to unexpected changes in its internal or external conditions.

Thus, an alternative approach to flapping wing MAV control that is flexible and less dependent on a model may be preferable

to the scheduled deployment of multiple model-dependent control-theoretic strategies that are designed for different conditions

and situations. This paper employs such an approach, and the work is distinguishable from the current related literature on the

basis of this philosophy. An example of an approach that is less model-dependent than control-theoretic methods is an on-line

search-based strategy that continually maximizes the time-varying fitness of MAV flapping flight by seeking desirable gait

parameters from among a bounded space of all possible gait parameters. In this example, the search process occurs according

to a rationale that corresponds only partially (instead of fully) to some underlying flapping wing model dynamics, and these

dynamics are typically inferred rather than imposed.

Such time-varying fitness constitutes feedback to the search process, but what determines fitness is not specified by the

search process by virtue of its model-independence. That is, the search process can be connected to any experimental sensor

input or to any model output that acts as a sensor input, and what is considered maximal fitness may be any of a number of

different definitions, one of which is stipulated at the time of design. The search process simply works to maximize fitness in

an on-line fashion in a dynamic environment regardless of how fitness is defined and of how complex the model or sensor is

that produces the fitness values for the process.

1.3. The Motivation for Efficient and Resilient Search

Since the airflow past a flapping wing is unsteady, any function of lift for the fitness objective for the search process is

highly nonlinear with local optima, which precludes the use of traditional gradient-based search optimization methods. More-

over, optimization of the flapping wing gait to meet lift requirements must be performed on-board the MAV by a controller that

has other flight responsibilities in addition to flapping wing gait selection; consequently, its computing resources cannot be de-

voted solely to completing an optimization process prior to each gait’s selection. In fact, any strategy that involves sequentially

repeating a previously-completed optimization (even over multiple gait selection cycles, typically under the assumption that

the environment is static for the duration of the optimization) can be ruled out. This is because such an approach to achieving

resilience to changing fitnesses is computationally-expensive: the scheme essentially determines, repeatedly, a stationary prob-

ability mass function on the space of gait parameters that is a delta function at the location of a suitable flapping wing gait (i.e.,

repetitive off-line optimization). But a truly resilient scheme that is responsive to fitness perturbations is one that changes the

distribution over the gait parameters at the same time as MAV performance and fitness changes. Intuitively, resilience implies

that under-performing fitness gaits have a low, non-zero realization probability, so that they can be infrequently sampled and

evaluated. Once fitness changes occur, and the low-probability but now high-performing gaits are realized, a resilient strategy

changes the gait parameter distribution to reflect changes in performance and fitness.

Hence, the motivation for an evolutionary search-based method of flapping wing gait fitness optimization that efficiently

explores the space of flapping wing gait parameters to produce a stationary probability distribution over the gait parameters

that is a function of time-varying fitness. Efficiency here refers to a scheme that trades off prior information about the search

space for search effort savings as quickly as possible (Jaynes, 1981). It has been shown (Jaynes, 1981; Menezes and Kabamba,

2014, 2016) that the most advantageous search-based strategy in a dynamic environment is one that is completely independent

of underlying model dynamics, because any reliance on a surmised model biases and slows searches when changes in operating

conditions invalidate that model. Thus, the biologically inspired optimization technique that is deployed in this paper lacks bias

as a result of independence from modeled dynamics. Instead, a heavy dependence on external stimuli exists, mimicking flapping

wing insect behavior. Additionally, the algorithm is responsive and resilient to fitness perturbations in their aftermath because

it is not hindered by model inaccuracies caused by the perturbations. Further, the desired responsiveness, model-independence,
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and global optimization properties are attained through only local, simplistic, comparative decisions, which render the scheme

computationally-inexpensive. The theory also shows (Menezes and Kabamba, 2016) that the strategy is not gradient-based, but

instead dwells longer in states that are more fit.

This paper’s contributions are unique because, as will be demonstrated, resilient flapping wing gait optimization is achieved

efficiently even in complicated settings without significant computation.

1.4. Goals

The objectives of this paper are to

1. summarize the recently proposed optimization algorithm called Selective Evolutionary Generation Systems (SEGS) to

facilitate practical implementation for control, and to highlight the technique’s information-theoretic and dynamic prop-

erties that result in efficiency and resilience, respectively (Section 2);

2. demonstrate the efficacy of the SEGS method in evolving MAV flapping wing gaits on-line to achieve hovering flight

(Section 3.1);

3. benchmark the SEGS algorithm’s properties on the flapping wing MAV hover problem (Section 3.2);

4. compare the SEGS technique’s performance on the flapping wing MAV hover problem to that of known evolutionary

search strategies that are special SEGS cases (Section 3.3); and

5. validate the SEGS scheme’s evolution of MAV flapping wing gaits for trajectory control in complex conditions like

unsteady airflow with coupled aerodynamic forces (Section 4).

1.5. Novelty

A preliminary version of a SEGS approach to MAV flapping wing gait estimation appears in the doctoral dissertation of

Menezes (2010). The SEGS technique is introduced as a Markov chain Monte Carlo method in Menezes and Kabamba (2014),

and its theory and its modeling of biology are fully documented in Menezes and Kabamba (2016). Sections 1 and 3–6 have

never been published in the peer-reviewed literature. Section 2 is an adaptation of the theory in Menezes and Kabamba (2014,

2016).

1.6. Outline

The remainder of this paper is as follows. Section 2 recaps the theoretical underpinnings of the SEGS technique described

in detail in Menezes and Kabamba (2014, 2016), and distills the core algorithmic procedure. Section 3 applies this procedure

to estimate MAV flapping wing gaits on-line to achieve hovering flight, provides various technique metrics, and compares

performance to two related evolutionary search strategies. Section 4 illustrates algorithm applicability and success in a realistic

flapping wing MAV trajectory control scenario. Section 5 highlights limitations that can be observed in the two case studies of

flapping wing gait evolution for hover and trajectory control, and suggests possible ways to address them. Section 6 presents

concluding remarks.

2. A Review of Selective Evolutionary Generation Systems

This section outlines a model-independent fitness optimization method that searches a space to produce a stationary proba-

bility distribution over the elements of that space, with the produced stationary probability distribution being a function of the

time-varying fitness of the elements. The method is a Markov chain Monte Carlo one that can be search-efficient (Menezes and

Kabamba, 2014) and that also models evolution and responsiveness in dynamic environments (Menezes and Kabamba, 2016).

For optimization, the stationary probability distribution that is produced by the Markov chain Monte Carlo method must reflect

higher stationary probabilities for elements with higher fitness.

Accordingly, we first formulate the search problem, then postulate a method that uses local decisions to achieve the desir-

able global stationary probability distribution that maximizes fitness, and finally highlight the method’s properties of search-

efficiency, resilience to fitness perturbations and relationship to two common evolutionary search algorithms. More theoretical

detail is available in Menezes and Kabamba (2016).

2.1. Problem Definition

Let X be a search space with elements xi, 1 ≤ i ≤ n. In the context of evolutionary computation, X is the set of genotypes;

for instance, X is the set of permissible flapping wing gaits. The search problem seeks a probability mass function φX : X → R
+

that accomplishes the specified objective below, and dynamic transition laws that cause X to be distributed according to φX . Let

z : X → Z be an unknown, computable, and possibly changing function that we are interested in. The set Z is a metric space,

the set of phenotypes. For example, z is the unknown mapping between flapping wing gaits and their resultant coefficients of
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lift, the set of which is Z. Suppose that we are given a desired element zdes in the image of z, and we wish to find x ∈ X such

that ||z(x) − zdes|| is small (i.e., z(x) ≈ zdes). Formally, we want a φX that helps achieve a known expected value Y ≥ 0, i.e.,

E φX
[||z(x) − zdes||] = Y. (1)

In the above, Y is effectively a tolerance, i.e., it is the acceptable mean distance between candidates in the image of z compared

to the desired image value. Let y(x) = ||z(x) − zdes||. The scheme to find φX should be efficient in that it trades off prior

information about X for search effort savings as quickly as possible.

Let f : Z → R
+. We allow the method to employ a function F : X → R

+ : x 7→ F(x) = ( f ◦ z)(x) = f (z(x)), a real-valued,

positive fitness function. We assume that for any xi ∈ X, φX(xi) is a differentiable function of the fitnesses F(x1), . . . , F(xn). We

desire φX(xi) to be responsive to perturbations, i.e., for all x j ∈ X,

∂φX(xi)

∂F(x j)
, 0. (2)

2.2. The Selective Evolutionary Generation Systems Algorithm

To search in X, a Markov chain Monte Carlo (Brémaud, 1999a) method is postulated that makes use of a selective evolu-

tionary generation system, which is a quintuple Γ = (X, R, P, G, F), where

• X is the set of genotypes, X = {x1, x2, . . . , xn};

• R is a set of resources whose elements can be utilized to transition between genotypes, R = {r1, r2, . . . , rm};

• P : R→ (0, 1] is a probability mass function on R, given by P(ri) = Pr[R = ri] = pi,
m
∑

k=1

pk = 1;

• G : X × R→ X is a mapping, called a generation function, from one genotype to another using a resource from R;

• F : X → R
+ is a positive function that evaluates genotype fitness;

• X is reachable (Cormen et al., 2009) through G and R; and

• the dynamics of the system are given by

X(t + 1) = S elect(X(t),G(X(t),R(t)),N), (3)

where S elect : X × X × [0,∞) → X is a random function such that if x1 ∈ X and x2 ∈ X are any two genotypes, and

N ∈ [0,∞) is the level of selectivity, then

S elect(x1, x2,N) =



















x1 with probability
F(x1)N

F(x1)N+F(x2)N ,

x2 with probability
F(x2)N

F(x1)N+F(x2)N .
(4)

In (3), X(t) denotes the realization of a random genotype at time t, R(t) denotes the realization of a random resource at time t,

G(X(t),R(t)) denotes the outcome genotype mapped from the realized genotype at time t utilizing the resource at time t, and

X(0) has a known probability mass function. Also in (3), the probability of a genotype realization at some future time given the

present genotype realization is conditionally independent of the past time history of genotype realizations. Thus, the dynamics

of a selective evolutionary generation system form a discrete-time homogeneous Markov chain (Brémaud, 1999b).

The S elect function has a number of interesting properties (Menezes and Kabamba, 2016), including that for all N,

Pr[S elect(x1, x2,N) = x1]

Pr[S elect(x1, x2,N) = x2]
=

(

F(x1)

F(x2)

)N

. (5)

That is, the ratio of the probabilities of selecting any two genotypes is equal to the ratio of their respective fitnesses raised to

the power N. This property is called local rationality, where “rational” refers to the ratio of the probabilities and is a historical

term that does not imply any agency (recall that a rational number is a ratio of integers). For any xi, x j ∈ X and rk ∈ R of the

selective evolutionary generation system Γ = (X,R, P,G, F), we can define the descendancy tensor, δ, with elements

δi jk =















1 if x j = G(xi, rk), 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m,

0 otherwise.
(6)
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Hence, the descendancy tensor indicates whether it is possible to produce offspring x j in one step from progenitor xi via

generation function G that employs a resource rk. We can use this tensor to create a matrix that represents the conditional

probability of transitioning to x j from xi, by utilizing the probability of selecting each available element in R and summing over

all m elements. The matrix γ, called the unselective matrix of transition probabilities, has elements

γi j = Pr[offspring is x j | progenitor is xi] =

m
∑

k=1

δi jk pk, 1 ≤ i ≤ n, 1 ≤ j ≤ n, (7)

and is a stochastic matrix (Menezes, 2010). The matrix of transition probabilities, P, has elements

Pi j = Pr[X(t + 1) = x j | X(t) = xi], (8)

=























































































Pr[S elect(xi, x j,N) = x j | X(t) = xi]

× Pr[offspring is x j | progenitor is xi], ∀ j , i,

Pr[S elect(xi, xi,N) = xi | X(t) = xi]

× Pr[offspring is xi | progenitor is xi]

+
n
∑

k=1
k,i

Pr[S elect(xi, xk,N) = xi | X(t) = xi]

× Pr[offspring is xk | progenitor is xi], if j = i,

(9)

=



































1

1+

(

F(xi )

F(x j )

)N γi j, ∀ j , i,

γii +
n
∑

j=1
j,i

1

1+

(

F(x j )

F(xi )

)N γi j, if j = i,
(10)

and is also a stochastic matrix (Menezes, 2010).

The central idea behind the Selective Evolutionary Generation Systems (SEGS) algorithm (Algorithm 1) is to deploy an

ergodic selective evolutionary generation system Γ = (X, R, P, G, F) with symmetric γ (i.e., equiprobable forward and reverse

transitions between any pair of genotypes prior to the selection process) so that the Markov chain that represents the resultant

stochastic dynamics has a row vector of stationary probabilities , π =
[

π1 π2 . . . πn

]

, given by

πi =
F (xi)

N

n
∑

k=1

F (xk)N

, 1 ≤ i ≤ n. (11)

This stationary distribution represents a more general, probabilistic version of the optimization of an objective function. The

Markov chain selects the state of maximum fitness with the highest stationary probability, and, in the limit as N approaches∞,

this probability is 1. That is, N tunes the concentration of the stationary probability distribution around the state of maximum

fitness, and in the limit as N approaches∞, the problem and solution then revert to one of standard, off-line optimization. In

Menezes and Kabamba (2016), it is also proven that the Markov chain is time-reversible, that the SEGS algorithm is correct,

and that increasing N reduces the mean hitting time to the fittest genotype.

Algorithm 1 The SEGS Algorithm

1: choose a level of selectivity

2: initialize the parent genotype

3: repeat

4: determine the fitness of the parent genotype

5: choose a resource

6: determine, using the generation function, the offspring genotype that is generated by the parent genotype with the chosen

resource

7: determine the fitness of the offspring genotype

8: select one genotype from the parent and offspring genotypes using the Select function

9: set the selected genotype as the new parent genotype

10: until some stopping criterion applies
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2.3. Information Theory and Efficiency

The Markov chain that represents the stochastic dynamics of a selective evolutionary generation system belongs (as proved

in Menezes and Kabamba (2016)) to a class of time-homogeneous, irreducible, ergodic Markov chains that are said to behave

rationally with respect to fitness F with level N. Such chains are characterized by stationary probability row vectors with

elements that satisfy

πi

π j

=

















F (xi)

F
(

x j

)

















N

, 1 ≤ i ≤ n, 1 ≤ j ≤ n, (12)

which is a definition of global rationality, where “rational” again refers to the ratio of the probabilities (again, as in rational

numbers, without any implications of agency), and “global” refers to the stationarity of these probabilities.

Menezes and Kabamba (2014, 2016) discuss how Markov chain rational behavior minimizes a cross-entropy function to

yield search entropy. The stationary distribution π of the ergodic Markov chain that behaves rationally with respect to fitness F

with level N is shown to solve the optimization problem

min
π1 ,...,πn

U(π) = −

n
∑

i=1

ϕi ln(πi), (13)

subject to the constraints
n
∑

i=1

πi = 1, and πi > 0, ∀i, utilizing the fitness distribution

ϕi =
F (xi)

N

n
∑

k=1

F (xk)N

, 1 ≤ i ≤ n. (14)

This result states that at the optimum, the stationary distribution agrees with the fitness distribution, i.e., π = ϕ. A corollary

is that the time-homogeneous, irreducible, ergodic Markov chain behaves rationally with respect to fitness F with level N if

and only if its stationary probability distribution minimizes the “fitness-expectation of information” (the right hand side of (13),

with information as defined by Shannon (1948)). At the optimum, this fitness-expectation of information is the entropy of the

fitness distribution:

U∗ = H(ϕ) = −

n
∑

i=1

ϕi ln(ϕi). (15)

Thereafter, the maximization of this search entropy is investigated, based on results about efficient search from Jaynes (1957,

1981) that specify entropy maximization to eliminate search biases. Such search biases can be induced by, for example, a model

that predisposes the optimization process; this predisposition causes inefficient search when the model itself is incorrect as a

result of internal or external change.

Maximizing entropy has another interpretation. Equations (13) and (15) can be used to derive (see Menezes and Kabamba

(2016)) measures of prior information for a search that were defined in Jaynes (1981). These include a measure of the amount

of prior information utilized by the search up to time t, and a measure of the savings in search effort thereby achieved. The

former measure can be used to prove correctness of the SEGS algorithm (Menezes and Kabamba, 2016). Both measures can be

utilized to demonstrate that ‘the optimal [search] policy is. . . the one that trades off initial information for reduced search effort,

as quickly as possible’ (Jaynes, 1981), and this policy is proved in Jaynes (1981) to be one of entropy maximization resulting

in optimally efficient search.

During model-independent search-based optimization with time-varying objective function or time-varying state fitnesses,

an exponential fitness function is proved to relate Markov chain rational behavior, search entropy and optimally efficient search

(Menezes and Kabamba, 2014). That is, suppose that y : X → R is an unknown function for which an expected value, E [y(x)],

is a known number Y in accordance with Section 2.1. Then a scheme with underlying Markov chain dynamics that behave

rationally and a fitness function that is exponential solves the search problem and also maximizes the search entropy while

doing so. It is shown in Menezes and Kabamba (2014) that the normalized fitness

ϕi = αe−βy(xi), 1 ≤ i ≤ n, (16)

(where α and β are constants) and the stationary distribution π of the time-homogeneous, irreducible, ergodic Markov chain

that behaves rationally with respect to fitness F with level N solves the optimization problem

max
ϕ1,...,ϕn

min
π1,...,πn

U(ϕ, π) = −

n
∑

i=1

ϕi ln(πi), (17)
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subject to the constraint E [y(x)] = Y. The implication is that a fitness function like

F(xi) = e−((z(xi)−zdes)
2) (18)

together with a scheme that makes use of Markov chain rational behavior (for instance, the SEGS technique, see Section 2.2)

guarantees efficient search-based optimization.

2.4. Markov Chain Rational Behavior and Resilience

Resilience of Markov chains that behave rationally is taken as the sensitivity of the stationary distribution to changes

in fitness. Specifically, for any time-homogeneous, irreducible, ergodic Markov chain, the extrinsic resilience of state xi to

changes in the fitness of state x j, j , i, is

ρi j =
∂πi

∂F(x j)
, (19)

and the intrinsic resilience of state xi to changes in its own fitness is

ρii =
∂πi

∂F(xi)
. (20)

The Markov chain is resilient if ρi j , 0 for all i and j. Since the stationary distribution π has the closed form expression (11)

for the time-homogeneous, irreducible, ergodic Markov chain that behaves rationally with respect to fitness F with level N, the

extrinsic and intrinsic resiliencies are

ρi j =
∂πi

∂F(x j)
=
−Nπiπ j

F(x j)
, ∀ j , i, (21)

ρii =
∂πi

∂F(xi)
=

Nπi (1 − πi)

F(xi)
. (22)

These equations for resilience are used in Menezes and Kabamba (2016) to prove that the level of selectivity has the following

asymptotic effect:

ρi j

∣

∣

∣

∣N=0
j,i

= ρii

∣

∣

∣

∣

N=0
= 0, (23)

lim
N→∞

j,i

ρi j = lim
N→∞
ρii = 0. (24)

That is, standard, off-line optimization (N → ∞) is non-resilient. Purely random optimization (N = 0) is also non-resilient.

Because the expected hitting time of the genotype that optimizes fitness also decreases with an increasing level of selectivity N,

a trade-off exists between this expected hitting time and resilience, with the trade-off controlled by N.

Menezes and Kabamba (2016) goes on to prove that Markov chain rational behavior is a sufficient condition for resilience,

while ergodicity is a necessary condition for resilience. In addition, Menezes and Kabamba (2016) also provides four equations

to analyze the effect of changes in genotype fitness on elements of the matrix of transition probabilities, P. These equations

demonstrate that, unlike gradient ascent optimization where the transition to another genotype would be directly proportional

to the fitness value, optimization with Markov chain rational behavior is reminiscent of the retardation property in the original

rational behavior (Meerkov, 1979); the stochastic process “slows down” transitions in more favorable fitness conditions to take

advantage of the external environment.

2.5. Relationship to Other Evolutionary Search Algorithms

Of the many machine learning strategies that the SEGS algorithm is compared to in Menezes (2010), two techniques are

found to be related: the (1+1)-Evolution Strategy (ES) (Beyer and Schwefel, 2002) and the Canonical Genetic Algorithm with

Fitness Proportional Selection (CGAFPS) (Rudolph, 1994). These algorithms are shown (Menezes, 2010) to be particular cases

of the SEGS algorithm by comparing (5) to each method’s ratio of the probability of selecting a candidate genotype for objective

function optimization to the probability of selecting the genotype’s offspring. A summary of the results follows.

For the (1+1)-ES strategy, one genotype, x1, produces one mutated offspring genotype, x2, and the ratio of the probability

of selecting x1 to the probability of selecting x2 is simply

Pr[x1 is selected]

Pr[x2 is selected]
=

ind (F (x1) > F (x2))

ind (F (x2) ≥ F (x1))
, (25)

where ind denotes the indicator function, satisfying ind(True) = 1 and ind(False) = 0. The ratio in (25) is taken to be∞ if the

denominator is zero. This ratio equals (5) when the parameter N in (5) approaches∞.
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For the CGAFPS, we are interested in the probability that a genotype, x1, of the population is chosen to be a member of

the population for the next generation without experiencing crossover or mutation. We then compare this probability to the

probability that an offspring of x1 is a member of the population at the next generation. Per Menezes (2010), the ratio of the

probability of selecting x1 to the probability of selecting x2 has form

Pr[x1 is selected]

Pr[x2 is selected]
= K

F(x1)

F(x2)
, K > 0. (26)

Although the equation above is similar to (5), the CGAFPS ratio of selection probabilities is proportional to the fitness ratio. In

(26), if K = 1 we obtain a particular case of (5) where N = 1.

3. MAV Flapping Wing Gait Estimation for Hover

The preceding theory indicates that the SEGS algorithm is suitable for on-line control whereby MAV flapping wing gaits

are efficiently and resiliently evolved in changing flight conditions. Simulation results of flapping wing MAV hovering flight

are provided in the following subsections to verify that the SEGS technique optimizes flapping wing gaits, is responsive, has

benchmark performance that corroborates the theory, and generalizes the two well-known evolutionary search methods as

previously described.

3.1. Applying the SEGS Algorithm

To implement Algorithm 1 to ensure flapping wing MAV hover, we first determine the selective evolutionary generation

system, i.e., its range of genotypes, generation function, etc. We begin by identifying a means of evaluating flapping wing

gait fitness for this selective evolutionary generation system such that the evaluation is external to the SEGS method and also

accurately represents the airflows that are induced by the flapping wing gaits that are selected by the technique. An experimental

implementation option for this fitness evaluation could involve the reading from an altitude sensor, but another on-line option

that is suited to simulation tests of the SEGS algorithm is that of an aerodynamic surrogate model, which is an alternative to

computationally expensive flow simulations for each flapping wing gait. In general, ‘surrogate models replace costly objective

function evaluations with inexpensive approximations of sufficient fidelity’ (Trizila et al., 2008). Such models can be developed

(Queipo et al., 2005; Forrester and Keane, 2009) using a variety of techniques. An aerodynamic surrogate model, when trained

on the computational results of a suitable number of design flapping wing gaits, can quickly provide information about the

aerodynamics of off-design gaits. Thus, a surrogate model of aerodynamic flow that is external to the SEGS optimization is

employed here to simulate flapping wing MAV flight performance, acting as a “sensor” that provides phenotype feedback to

the SEGS technique. Lim et al. (2010), Olhofer et al. (2011), and Jin (2011) validate such use of a surrogate model, and also

the use in the original Menezes (2010) that preceded these works. The external surrogate model can be substituted in SEGS

algorithm hardware implementations with information from flapping wing MAV sensors (e.g., from an altimeter).

Flapping wing aerodynamic surrogate models developed by Trizila et al. (2008) are readily available and have been analyzed

extensively. In what follows, an ensemble surrogate model that is a weighted average of a surrogate model developed using

kriging and another surrogate model developed using support vector regression with a linear spline kernel is employed. This

ensemble surrogate model first determines an average coefficient of lift, CL, for each flapping wing stroke profile that is produced

by flapping wing gait parameters, and the computed CL is then provided back to the SEGS algorithm. The reason for the focus

on non-dimensional CLs instead of cycle-averaged dimensionalized lift force, L, values can be attributed to the lift expression

L =
1

2
CLρU

2S (27)

(where ρ is the local air density, U is the forward flight velocity, and S is the wing planform area), which implies that mainte-

nance of a fixed L that is chosen by supervisory control because of the current mission scenario (e.g., hover, ascent, or descent

modes) requires that disturbances like wind gusts that affect U be countered by manipulating CL through flapping wing gait

changes.

The prescribed flapping motion (Fig. 1) that is utilized by the ensemble surrogate model is

h(t) = ha(t) sin(ωt), (28)

α(t) = 90 − αa(t) sin (ωt + φα (t)) , (29)

where ha(t) ∈ [1, 2] and αa(t) ∈ [45, 80] are the piecewise-constant amplitudes of flapping stroke height and pitch, respectively,

ω is a frequency that depends on ha and a constant Reynolds number of 100, and φα(t) ∈ [60, 120] is the piecewise-constant

phase shift angle for flapping pitch. Hence, the hovering flapping flight problem: given a time history of the target lift coefficient,

CLdes
(t), determine suitable time-varying flapping wing kinematic parameters that meet the target. (In the experimental version
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2ha

h(t)

α(t)

airfoil
profile

Figure 1: Schematic representation of a flapping wing forward half-stroke, where the dot represents the leading edge of a 15% elliptical airfoil. The flapping

wing airfoil moves forward in an aircraft body-fixed reference frame through twice the stroke height ha, and is pictured here at the midpoint of the forward

half-stroke. Upon reaching its most forward position, the airfoil turns around for the back half-stroke.

of this problem, CLdes
(t) and the computed CL can be replaced, for instance, by time-varying desired altitude and the current

altitude, respectively.)

We craft the following selective evolutionary generation system to solve this problem. The set of genotypes, X, is the set of

ordered triples (ha (t) , αa (t) , φα (t)), where

ha (t) ∈ {1, 1.1, 1.2, . . . , 1.9, 2}, (30)

αa (t) ∈ {45, 46, 47, . . . , 79, 80}, (31)

φα (t) ∈ {60, 61, 62, . . . , 119, 120}. (32)

The set of resources, R, is the set {r1, r2, r3, r4, r5, r6}, with ri = ei, 1 ≤ i ≤ 6 (where ei are the standard basis vectors for R6).

This set facilitates the perturbation of one of the three elements of a genotype in either a positive or negative direction when

an offspring is generated with G. The probability mass function on R, P, is the discrete uniform distribution. This choice of

probability mass function ensures that the matrix γ is symmetric. The generation function, G, when applied to x ∈ X using

resource r ∈ R, yields G ((ha (t) , αa (t) , φα (t)) , ri), 1 ≤ i ≤ 6, the triple given by


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

, if 1 < ha (t) < 2, 45 < αa (t) < 80, 60 < φα (t) < 120,

(ha (t) , αa (t) , φα (t)) , otherwise.

(33)

The above is a modified version of a random walk over a discretized search space, where the modification involves selection

dynamics described by the S elect function to produce a selective evolutionary generation system. Since the objective is for

CL(t) to track CLdes
(t), and we wish to do so efficiently, we choose to use the fitness function

F (ha (t) , αa (t) , φα (t)) = exp

(

−
(

K f

(

CLdes
(t) − CL(t)

)

)2
)

, (34)

where K f = 10, and CL(t) = CL (ha (t) , αa (t) , φα (t)) is the output of the surrogate model. Again, the fitness function can be

modified to use sensor readings while implemented in hardware.

A sample run of the evolution scheme when N = 5 is depicted in Figs. 2 to 3. A genotype triple that achieves satisfactory

performance is found within 1000 generations, and the scheme is resilient because it quickly finds a new triple that achieves an

acceptable output when the target lift coefficient, and hence the fitness function, changes. In Fig. 2, the red vertical dashed lines

indicate a generation for which the evolved flapping forward and backward motion is illustrated in Fig. 3.

For generations 1, 900, 1025, and 2000, the plots in Fig. 3 each display 10 snapshots of a 15% elliptical airfoil through a

flapping half-stroke. The dot represents the leading edge of the airfoil, which moves in an aircraft body-fixed reference frame

with neutral position at (0,0). The arrows on the forward half-stroke plots indicate that the airfoil travels from the most rearward

position to the most forward position, whereas the opposite is true for a back half-stroke. Although the periods of the strokes

vary at different generations because of the constant Reynolds number, the snapshots are taken at the same fractional period

interval. Hence, a stroke with more spacing between snapshots has a faster motion than a stroke with snapshots that are closely

spaced.

The scheme averages 1 min 18 s to compute the output of 1000 generations in Matlab on a 2.50 GHz dual-core processor

laptop with 4.00 GB of RAM and the Windows Vista operating system. This time includes generational surrogate model

computation time. If the generational surrogate model computation time is not included, the scheme averages 0.13 ms to

complete a generation, measured over 2000 generations.
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(a) Target (dashed) and actual (solid) lift coefficients that were found in a sample run

of the evolution scheme. At each generation, the actual lift coefficient is the output

of a surrogate model for an input of a flapping wing kinematic parameter triple that

is determined by the scheme.
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(b) Fitness values of the lift coefficients that correspond to the flapping wing kine-

matic parameter triples determined by the scheme. Since the fitness value is highest

when the target and actual lift coefficients match, a change in the target lift coefficient

at generation 1001 causes a significant reduction in a previously high fitness value.
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(c) Flapping wing kinematic parameters evolved by the scheme. The converged solu-

tions at generations 1000 and 2000 differ from each other, but both have high fitness

and achieve the target lift coefficient at that generation.

Figure 2: Sample resilient selective evolutionary generation system results with a level of selectivity N value of 5. When the target lift coefficient is changed at

generation 1001, which nullifies the fitness of the scheme’s previously converged-upon flapping wing kinematic parameters, the scheme displays resilience by

recovering to find a new triple of suitable kinematic parameters. Illustrations of the flapping wing forward and back half-strokes for the generations indicated

with red vertical dashed lines are in Fig. 3.
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(h) Gen. 2000: Back Half-Stroke

Figure 3: Snapshots of the forward and back half-strokes of the flapping wing sampled at the 1st, 900th, 1025th, and 2000th generations of the run of the

evolution scheme depicted in Fig. 2. The 1st and 1025th generations are at the start of the scheme’s determinations of suitable flapping wing kinematic

parameters that meet a target lift coefficient, while the 900th and 2000th generations are when the actual lift coefficient is satisfactory. Because the snapshots

in this figure are taken at the same fractional period interval, the stroke at the 900th generation is faster than the stroke at the 2000th generation, since it has a

greater spacing between snapshots. The stroke at the 900th generation is also comparatively longer. It is this rapid and expansive motion at the 900th generation

that achieves the higher desired target lift coefficient of 0.5, in contrast to the slower and shorter stroke at the 2000th generation that achieves the lower desired

target lift coefficient of 0.1.
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3.2. Benchmark Results of the SEGS Algorithm

3.2.1. Level of Selectivity Effects

Sample runs of the selective evolutionary generation system for various levels of selectivity are plotted in Fig. 4. For this

comparison, the algorithm was initialized to the triple (ha(0), αa(0), φα(0)) = (1.5, 62, 60), and the target lift coefficient was

held constant at CL = 0.5. These figures illustrate the rationale for choosing N = 5 in Section 3.1. At low levels of selectivity

(N = 0.5 and N = 1), the algorithm wanders through the search space and does not reach the target lift coefficient within

a user-specified limit of 1000 generations. Increases in the level of selectivity cause a corresponding improvement in target

lift coefficient tracking. The N = 5 trajectory depicts excursions away from the desired lift coefficient; these excursions are

minimized at the slightly higher level of selectivity, N = 10. The N = 100 trajectory achieves near perfect lift coefficient

tracking with few excursions. A suitable choice of the level of selectivity that tolerates excursions is therefore either N = 5 or

N = 10, since excursions are one indicator of resilience. Another indicator of resilience is the initial behavior of the N = 5 and

N = 10 trajectories; however, these two trajectories are approximately equal during the first 50 generations. Since the N = 5

trajectory achieves tracking and greater resilience than the N = 10 trajectory, we choose the level of selectivity N = 5.

The trade-off between optimality and resilience is documented in Fig. 5. The figure shows simulations where the target lift

coefficient varies frequently during 1000 generations, and the target includes a CL = 0.7 value that is beyond the flapping wing

capabilities that the surrogate model simulates. It is clear that the N = 5 trajectory displays a more immediate response to the

change in target than the N = 100 trajectory. This response is also evident in the initial higher fitness values of the N = 5

trajectory in Fig. 5(b). However, the more selective N = 100 trajectory overtakes the N = 5 trajectory after a short period of

time, in accordance with the shorter convergence times and optimality properties of high levels of selectivity. Both trajectories

handle an unattainable target similarly.

The effect of the level of selectivity on one possible stopping criterion is outlined in Table 1. The table lists the average

number of generations required to find a flapping wing gait with a lift coefficient that is within ±3% of the target value. This

tolerance corresponds to a fitness value that is at least 0.975 or greater. As expected, an increase in N decreases the number of

generations to find a “good” solution.

Table 1: Level of Selectivity Effects on a Stopping Criterion

N Initial Conditions Target CL Avg. No. of Generations

1 (1.5,62,60) 0.5 1218

5 (1.5,62,60) 0.5 399

10 (1.5,62,60) 0.5 246

100 (1.5,62,60) 0.5 191
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(a) Lift coefficients that were found in sample runs of the evolution scheme at differ-

ent levels of selectivity, N. The scheme wanders through the search space when N is

low and achieves near perfect target tracking with few excursions when N is high.
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(b) Fitness values of the lift coefficients that correspond to the flapping wing kine-

matic parameter triples determined by the scheme during the sample runs at different

levels of selectivity, N.
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(c) Flapping wing kinematic parameters evolved by the scheme during the sample

runs at different levels of selectivity, N. At high N (e.g., here N = 10 and N = 100),

a similar evolutionary process and converged solution result.

Figure 4: Sample level of selectivity N effects in a selective evolutionary generation system. The N = 5 trajectory achieves tracking and also tolerates

excursions from the target, which is an indicator of resilience.
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(a) Lift coefficients that were found in sample runs of the evolution scheme at two dif-

ferent levels of selectivity, N, while the target setpoint varies (including at an unattain-

able value of 0.7). After every target change, the lower selectivity N = 5 trajectory

is quicker to initially respond compared to the higher selectivity N = 100 trajectory.

If the target stabilizes after a change, the N = 100 trajectory overtakes the N = 5

trajectory to more quickly attain and better track an optimal solution, in accordance

with the theory.
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(b) Fitness values of the lift coefficients that correspond to the flapping wing kine-

matic parameter triples determined by the scheme during the sample runs at two

different levels of selectivity, N. The N = 5 trajectory clearly demonstrates greater

resilience than the N = 100 trajectory with consistently higher fitness values in the

immediate aftermath of a target change.

Figure 5: Sample illustrative trade-off between optimality and resilience in a selective evolutionary generation system. For highly fluctuating environments, a

lower level of selectivity N permits a greater resilience to fluctuations, whereas in less frequently perturbed environments, a larger N ensures shorter times for

attaining an optimal solution.
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3.2.2. Initialization Effects

The initial conditions of a SEGS algorithm affect performance. Consider Table 2(a), which displays the effect of various

initializations on the average number of generations required to find a flapping wing gait with a lift coefficient that is within ±3%

of the target. As the table indicates, there is significant disparity in the average number of generations that is required before the

stopping criterion is reached. Hence, initial conditions do play a role in the convergence of the SEGS algorithm. Moreover, the

number of fit solutions in the search space also affect convergence. The surrogate model employed by the selective evolutionary

generation system was trained on 24 samples of two dimensional computational fluid dynamics data, of which four samples

had a lift coefficient of approximately 0.5 (the most number of samples for a given lift coefficient), and only one sample had a

lift coefficient above 0.6 (Trizila et al., 2008). Accordingly, the effect of the initializations in Table 2(a) on the average number

of generations required to find a flapping wing gait with lift coefficient within ±3% of 0.62 is tabulated in Table 2(b). It is clear

that a significantly greater average number of generations is required when there are fewer fit solutions in the search space.

Table 2: Initialization Effects on a Stopping Criterion

(a) Many Fit Solutions

N Initial Conditions Target CL Avg. No. of Generations

5 (1.5,62,60) 0.5 399

5 (1.5,45,60) 0.5 370

5 (1.5,62,90) 0.5 79

5 (1,45,60) 0.5 368

5 (1,45,120) 0.5 1

5 (1,80,60) 0.5 466

5 (1,80,120) 0.5 120

5 (2,45,60) 0.5 390

5 (2,45,120) 0.5 94

5 (2,80,60) 0.5 328

5 (2,80,120) 0.5 120

(b) Few Fit Solutions

N Initial Conditions Target CL Avg. No. of Generations

5 (1.5,62,60) 0.62 1171

5 (1.5,45,60) 0.62 967

5 (1.5,62,90) 0.62 468

5 (1,45,60) 0.62 1065

5 (1,45,120) 0.62 80

5 (1,80,60) 0.62 1280

5 (1,80,120) 0.62 150

5 (2,45,60) 0.62 995

5 (2,45,120) 0.62 1

5 (2,80,60) 0.62 820

5 (2,80,120) 0.62 161

3.2.3. Discretization Effects

The selective evolutionary generation system in Section 3.1 discretizes the search space into ha step sizes of 0.1, and into

αa and φα step sizes of 1 degree. The type of discretization employed by the SEGS algorithm affects the average number of

generations required to find a flapping wing gait subject to the stopping criterion previously outlined. Table 3 provides the

details for possible discretizations, with N = 5, initial conditions (ha (0) , αa (0) , φα (0)) = (1.5, 62, 60), and target lift coefficient

0.5. The table hints at the prospect of an optimal discretization of the search space that minimizes the average number of

generations required to find a fit flapping wing gait. However, care must be taken to not use too coarse a discretization in the

quest for reduced computation, since such a discretization may omit subtle features of the search space. It is expected that the

optimal discretization be application dependent.

Table 3: Discretization Effects on a Stopping Criterion

Discretization Type ha Step αa Step φα Step Avg. No. of Generations

Fine 0.05 0.5 0.5 918

Baseline 0.1 1 1 399

Coarse 0.2 5 5 49

Very Coarse 0.5 10 10 58

3.3. Comparison to Related Evolutionary Search Algorithms

A sample run of the (1+1)-ES is depicted in Fig. 6. A genotype triple that achieves satisfactory performance is found

within 1000 generations. Identical to the average computation time for the SEGS algorithm, the scheme averages 1 min 18 s

to compute the output of 1000 generations in Matlab on a 2.50 GHz dual-core processor laptop with 4.00 GB of RAM and

the Windows Vista operating system. Again, this time includes generational surrogate model computation time. However,

the scheme is faster than the SEGS algorithm on a per generation basis when not including the generational surrogate model

computation time, as it averages 0.073 ms measured over 2000 generations.
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(a) Target (dashed) and actual (solid) lift coefficients that were found in a sample run

of the (1+1)-ES.
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(b) Fitness values of the lift coefficients that correspond to the flapping wing kine-

matic parameter triples determined by the (1+1)-ES.
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(c) Flapping wing kinematic parameters evolved by the (1+1)-ES.

Figure 6: Sample (1+1)-ES results. Characteristically, there are no excursions while finding or tracking the target.
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A sample run of the CGAFPS is depicted in Fig. 7. The algorithm was initialized with a population of four triples:

(1.5, 62, 60), (1.0, 45, 60), (2.0, 80, 120) and (1.5, 62, 90). A genotype triple that achieves satisfactory performance is found

within 1000 generations. The scheme averages 1 min 47 s to compute the output of 1000 generations in Matlab on a 2.50 GHz

dual-core processor laptop with 4.00 GB of RAM and the Windows Vista operating system. This time includes generational

surrogate model computation time, and is longer than the average computation time for the SEGS algorithm. On a per gener-

ation basis when not including the generational surrogate model computation time, this scheme is the slowest at an average of

0.21 ms measured over 2000 generations.
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(a) Target (dashed) and actual (solid) lift coefficients of maximum fitness in a popu-

lation that was initialized at four, as found in a sample run of the CGAFPS.
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(b) Maximum fitness values of the lift coefficients in a population that was initialized

at four, corresponding to the flapping wing kinematic parameter triples determined

by the CGAFPS.
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(c) Flapping wing kinematic parameters of the maximum-fitness lift coefficient in a

population that was initialized at four, as evolved by the CGAFPS.

Figure 7: Sample CGAFPS results in the population. Unlike the (1+1)-ES behavior in Fig. 6, numerous excursions while finding and tracking the target occur.
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Fig. 8 compares the resilience of these two algorithms to the SEGS technique. The (1+1)-ES behaves like a selective

evolutionary generation system with an N that exceeds 100. The CGAFPS exhibits resilience, which is unsurprising since it is

similar to a SEGS scheme with N = 1.
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(a) Lift coefficients that were found in a sample run of the (1+1)-ES and in sample

runs of the selective evolutionary generation scheme at two different levels of selec-

tivity, N, while the target setpoint varies (including at an unattainable value of 0.7).

After every target change, the (1+1)-ES trajectory is slower to respond than the N = 5

and N = 100 trajectories, but the former trajectory overtakes the latter two to more

quickly attain and better track an optimal solution.
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(b) Maximum-fitness lift coefficients that were found in a sample CGAFPS popula-

tion that was initialized at four and that were found in four sample runs of the selective

evolutionary generation scheme, where each was initialized to one member of the ini-

tial CGAFPS population. The latter was repeated for a second level of selectivity, N.

All trajectories have a target setpoint that varies (including at an unattainable value

of 0.7). After every target change, the CGAFPS trajectory is quicker to respond than

the N = 5 and N = 100 trajectories, but the former trajectory has more excursions

and poorer tracking of an optimal solution.

Figure 8: A visual comparison of the (1+1)-ES and the CGAFPS to the SEGS algorithm showing that the (1+1)-ES behaves like a selective evolutionary

generation system with an N that exceeds 100, while the CGAFPS behaves like a selective evolutionary generation system with an N that is smaller than 5.

4. MAV Flapping Wing Gait Estimation for Trajectory Control

Model-independence of the SEGS technique implies that the external surrogate model of Section 3 can be easily replaced by

an external high-fidelity model of the complex and realistic airflows caused by flapping wing gait genotypes, with the “sensed”

fitness feedback now evaluated on a different phenotype, e.g., MAV forward-flight trajectory. As previously stated, it is also

possible to leverage sensor readings as an alternate during hardware forward-flight. In this section, the produced trajectory

solution is evolved in “real-time” as the MAV flies to demonstrate technique practicality.

The Theodorsen-Garrick model (Theodorsen, 1935; Garrick, 1936) predicts the lift and thrust forces on a flat plate under-
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going a prescribed flapping motion with various input kinematic parameters. This flapping motion is described by

h(t) = ha(t) sin (ω (t) t + φh (t)) , (35)

α(t) = αa(t) sin (ω (t) t + φα (t)) , (36)

where ha(t) ∈ (0, 1] and αa(t) ∈ [−0.5, 0.5] are the piecewise-constant amplitudes of flapping stroke height and angle of attack

respectively, ω(t) ∈ (0, 1] is a piecewise-constant frequency, and φh(t) ∈ [−0.5, 0.5] and φα(t) ∈ [−0.5, 0.5] are the piecewise-

constant phase shift angles for flapping stroke height and angle of attack, respectively. The flapping motion described in (35)–

(36) leads to the computation of lift and thrust forces through the equations stated in Garrick (1936). These forces determine the

trajectory followed by the flapping wing; hence, the flapping flight motion problem: given a target trajectory (e.g., a constant

altitude forward motion trajectory), find suitable flapping wing kinematic parameters that meet the target.

We utilize the following selective evolutionary generation system. The set of genotypes, X, is the set of ordered pentuples

(ha (t) , ω (t) , φh (t) , αa (t) , φα (t)), where

ha (t) ∈ {0.1, 0.2, 0.3, . . . , 0.9, 1}, (37)

ω (t) ∈ {0.05, 0.1, 0.15, . . . , 0.95, 1}, (38)

φh (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}, (39)

αa (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}, (40)

φα (t) ∈ {−0.5,−0.45,−0.4, . . . , 0.45, 0.5}. (41)

The set of resources, R, is the set {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10}, with ri = ei, 1 ≤ i ≤ 10 (where ei are the standard basis

vectors for R10). This choice of resources facilitates the perturbation of one of the elements of a genotype in either a positive

or negative direction when an offspring is generated. Again, the probability mass function on R, P, is the discrete uniform

distribution. As before, this choice of probability mass function ensures that the matrix γ is symmetric. The generation

function, G, applied to X as G ((ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) , ri), 1 ≤ i ≤ 10, is the pentuple given by
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if 0.1 < ha (t) < 1, 0.05 < ω (t) < 1, −0.5 < φh (t) < 0.5, −0.5 < αa (t) < 0.5, −0.5 < φα (t) < 0.5,

(ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) , otherwise.

(42)

The above is again a modified version of a random walk over a discretized search space, where the modification involves

selection dynamics described by the S elect function to produce a selective evolutionary generation system. The flapping wing

parameters evolved by the SEGS algorithm are inputs for the Theodorsen-Garrick model, which outputs lift L(τ) and time-

averaged-thrust T (τ) over time τ. These forces are in turn inputs for the following double-integrator, unit-mass wing trajectory

dynamics,
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, (43)

where (x (τ) , y (τ)) is the trajectory of the center of mass of the flapping wing. This trajectory is sampled ν times, yielding

(x (k) , y (k)), 1 ≤ k ≤ ν. For each x(k), the target ydes(k) is computed. Let

AvgDistance(t) =

ν
∑

k=1

|ydes(k) − y(k)|

ν
(44)

be the mean difference between the target and current trajectories. Since the objective is to track the target, we use the following

fitness function for the SEGS algorithm,

F (ha (t) , ω (t) , φh (t) , αa (t) , φα (t)) = exp
(

− (0.1AvgDistance(t))2
)

. (45)

To check SEGS controller performance, a sample initial trajectory and an evolved trajectory after 200 generations with

N = 5 are plotted in Fig. 9(a), where the trajectories are depicted over the same period of time and the vehicle state (position and
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velocity) is not updated with the passage of each generation. Thus, these trajectories are “precomputed,” i.e., the whole MAV

trajectory at the initial and 200th-generation is shown. This plot shows that the evolved kinematic parameters reduce altitude

excursions away from the target trajectory by a factor of four while utilizing roughly the same amount of time-averaged-thrust

that was specified by the initial set of kinematic parameters. Moreover, the evolved trajectory trend tracks the constant altitude

desired trajectory, while the initial trajectory trend does not (it ascends).

0 20 40 60 80 100
−5

0

5

10

15

20

25

X Position

Y
 P

os
iti

on

 

 

Initial Trajectory
Evolved Trajectory
Reference Trajectory

(a) Target trajectory (dashed), initial precomputed trajectory (solid), and

the 200th (dashed-dotted) precomputed trajectory evolved by the SEGS

algorithm.
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(b) Target trajectory (dashed), trajectory from initial conditions without any

SEGS evolution (solid), and evolved sample trajectories after 20 flapping wing

strokes when N = 1 and N = 5 (dotted and dashed-dotted, respectively).

Figure 9: Successful flapping wing MAV forward-flight trajectory control via selective evolutionary generation for both “precomputed” and “real-time” trajec-

tories. These trajectory types are explained in the text.

The scheme averages 2 min 34 s to compute the output of 200 generations in Matlab on a 2.50 GHz dual-core processor

laptop with 4.00 GB of RAM and the Windows Vista operating system. This time includes generational Theodorsen-Garrick

model computation time. Without it, the scheme averages 0.092 ms per generation, measured over 200 generations.

A true MAV trajectory consists of piecewise trajectories where each sub-trajectory piece is produced during the time taken

to complete a flapping wing stroke, and vehicle position and velocity at the end of a stroke represent the initial state for the

next stroke. In this practical scenario, a SEGS-based controller only updates a flapping wing gait at the start of every stroke,

and is free to devote the remaining time during stroke completion to other tasks. Each stroke elucidates fitness for comparison

with either a succeeding or preceding flapping wing gait in accordance with Algorithm 1. As shown by the samples in Fig.

9(b), when starting from the same initial conditions of Fig. 9(a) and with the new goal of tracking a slight descending trajectory

(which was chosen to illustrate SEGS control versatility, i.e., a different task from Fig. 9(a) and in the opposite direction from

the trajectory produced by the first flapping wing gait) the depicted motion during 20 flapping wing strokes now represents

the “real-time” evolution of MAV flight. Fig. 9(b) presents simulated results for N = 1 and N = 5. Corroborating Fig. 5 and

the described theory, SEGS-based flapping wing gait evolution with a lower level of selectivity displays a more immediate

trajectory tracking response at the start of the simulation and then strays, while SEGS-based flapping wing gait evolution with

a higher level of selectivity has a slower response but is more adept at target following.

The N = 5 trajectory of Fig. 9(b) showcases the last goal of this paper: on-line MAV flapping wing gait trajectory control

with minimal computation (here, one updated parameter per stroke). By construction (through use of an exponential fitness

function), the control process is search-efficient. The control process also inherits the responsiveness properties that were

previously illustrated for hover.

5. Limitations and Possible Mitigation Strategies

The two case studies in this paper demonstrate the feasibility of evolving MAV flapping wing gait in real-time by showing

that computation can be performed quickly without the burden of an aerodynamic model. However, two limitations are also

apparent from these case studies.

First, the evolutionary computation approach that is deployed in this work emulates nature, which provides the requisite

aerodynamic model through fitness feedback. But the associated downside of this process is that natural phenomena take time

to occur, and thus the described controller has to wait for feedback to adjust a gait. It follows that many wing beats must be

observed to evolve a gait that produces a desired mean aerodynamic force vector. This requirement introduces time delays into

the control loop that can lead to low bandwidth performance. During these time delays and the ensuing evolution transient, the

MAV may pitch, roll or yaw in an unmodeled way, resulting in feedback to the controller that is different from the depiction in

the above studies. In sum, computational burden has been traded off for convergence time.
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The second limitation relates to issues of MAV gait parameter coupling and of the reachability of the entire search space in

practice. Because a flapping wing MAV is a coupled electromechanical aeroelastic system, the prime movers that actuate the

wings (such as drive motors or piezoelectric actuators) are affected by the aerodynamic forces and moments that are produced

by the wings. Therefore, when a voltage command is specified to the prime mover for a particular motion profile, the structural

dynamics and aerodynamic loads at that time may either prevent or augment prime mover motion, which implies that any

disturbance affecting the MAV changes simultaneously with gait parameters. Since gait parameters vary with prime mover

voltage instead of via direct command, it is possible that more than one gait parameter may change together. Such parameter

coupling may lead to different portions of the gait parameter space being unreachable for different flight conditions and times.

In addition to this variable search space reachability, the controller search process may also be complicated by sensor mea-

surement noise, which adversely affects fitness feedback. Nevertheless, in the face of all these complications, the theory proves

that the described controller can still evolve feasible parameters that achieve maximal fitness. As evidenced by the benchmark

results, where convergence to a suitable but not necessarily unique gait phenotype occurs, the fact that this convergence is

affected by initial conditions and the number of fit solutions in the search space means that variable parameter coupling and

imperfect sensors will also affect the convergence process, with different fit gait parameters attainable at different times. Cor-

responding time delays associated with traversing a less-connected gait parameter space and also with the need to increase

confidence in sensor readings then tie this limitation to the first one above.

Despite these two limitations, this paper has shown the viability of simultaneously evolving optimal MAV flapping wing

gaits efficiently and resiliently, adapting on-line, and, through model-independence, allowing feedback from either experimental

sensors or alternate external models (affording control versatility for hover or forward flight, unsteady or quasi-steady aerody-

namics, and any dynamics or wing kinematics). One obvious way to mitigate the first limitation above, while keeping the

one wing beat per generation constraint, is to increase the wing beat frequency. A second way that mitigates both limitations

is to combine the control process in this work with a model-based feedback controller (i.e., to use an inner-loop, outer-loop

approach), where the model-based controller also adjusts gait parameters once per wing beat using an a priori model that is

an imperfect map of gait parameters to cycle-averaged forces and moments. Thus, the model-based controller stabilizes and

achieves large-tolerance tracking performance, while the evolutionary controller fine-tunes gait parameters to improve perfor-

mance. This type of control scheme is deferred to future work, along with a comparison to other model-based methods such as

adaptive control and extremum seeking control. Related to the second mitigation strategy, a similar way to mitigate the second

limitation is to ensure that initial conditions for gait parameters are always near converged solutions (i.e., the evolutionary pro-

cess is limited to small time-scales only), which also implies that evolved gaits for a desirable target are good initial conditions

for the next target, and that successive desirable targets are never too far apart.

6. Conclusions

Two Micro Air Vehicle (MAV) flapping wing gait evolution applications are presented in this paper. The first application,

having an objective of hovering flight, demonstrates the efficacy of this paper’s chosen evolutionary computation control tech-

nique in optimizing flapping wing gaits. It also serves as a test of algorithm resilience, and as a benchmark problem on which

to compare related methods. The algorithm itself can be optimally search-efficient in dynamic environments, trading off prior

information about the search space for search effort savings as quickly as possible. Optimality arises from a maximization

of search entropy, which results from minimizing a fitness-expectation of information. The process lacks bias and is model-

independent, thereby avoiding erroneous predispositions of the search that result when a utilized model is rendered incorrect

by environment changes. The technique is sufficient for stochastic behavior that is in turn sufficient for resilience to search

objective variations caused by the environment changes.

The second application validates the capability of the chosen evolutionary computation technique to achieve on-line control

for a realistic, complex problem. The objective of this application is to vary wing beat kinematics to ensure that the trajectory

of the center of mass of the flapping wing, which moves under the influence of coupled aerodynamic (lift and thrust) forces

generated by a flapping wing model in unsteady air flow, follows a desired trajectory. This paper’s demonstration of a successful

solution to tackling this physically-motivated problem, in combination with satisfactory algorithm metrics and performance on

the first application, confirm the existence of an efficient and resilient method of controlling the gaits of a flapping wing MAV.
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Brémaud, P., 1999b. Markov Chains: Gibbs fields, Monte Carlo Simulation and Queues. Springer. Ch. 2.

Brunton, S.L., Rowley, C.W., 2013. Empirical state-space representations for Theodorsen’s lift model. Journal of Fluids and Structures 38, 174–186.

Doi:10.1016/j.jfluidstructs.2012.10.005.

Caetano, J.V., de Visser, C.C., de Croon, G.C.H.E., Remes, B., de Wagter, C., Verboom, J., Mulder, M., 2013. Linear aerodynamic model identification of a

flapping wing MAV based on flight test data. International Journal of Micro Air Vehicles 5, 273–286. Doi:10.1260/1756-8293.5.4.273.

Chung, S.J., Dorothy, M., 2010. Neurobiologically inspired control of engineered flapping flight. Journal of Guidance, Control, and Dynamics 33, 440–453.

Doi:10.2514/1.45311.

Conn, A., Burgess, S., Hyde, R., Ling, C.S., 2006. From natural flyers to the mechanical realization of a flapping wing micro air vehicle, in: Proceedings of

the 2006 IEEE International Conference on Robotics and Biomimetics, pp. 439–444. Doi:10.1109/ROBIO.2006.340232.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2009. Introduction to Algorithms. MIT Press. third edition. Pp. 1170.

De Croon, G., De Clercq, K., Ruijsink, R., Remes, B., De Wagter, C., 2009. Design, aerodynamics, and vision-based control of the DelFly. International

Journal of Micro Air Vehicles 1, 71–97. Doi:10.1260/175682909789498288.

Deng, X., Schenato, L., Sastry, S.S., 2006a. Flapping flight for biomimetic robotic insects: Part II -- flight control design. IEEE Transactions on Robotics 22,

789–803. Doi:10.1109/TRO.2006.875483.

Deng, X., Schenato, L., Wu, W.C., Sastry, S.S., 2006b. Flapping flight for biomimetic robotic insects: Part I – system modeling. IEEE Transactions on Robotics

22, 776–788. Doi:10.1109/TRO.2006.875480.

Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O., 2010. Wingbeat shape modulation for flapping-wing micro-air-vehicle control during hover. Journal of

Guidance, Control, and Dynamics 33, 724–739. Doi:10.2514/1.47146.

Doncieux, S., Hamdaoui, M., 2011. Evolutionary algorithms to analyse and design a controller for a flapping wings aircraft, in: Doncieux, S., Bredèche, N.,
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Pérez-Arancibia, N.O., Duhamel, P.E.J., Ma, K.Y., Wood, R.J., 2015. Model-free control of a hovering flapping-wing microrobot. Journal of Intelligent &

Robotic Systems 77, 95–111. Doi:10.1007/s10846-014-0096-8.
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