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ABSTRACT

This paper is motivated by the need to minimize the payload
mass required to establish an extraterrestrial robotic colony.
One approach for this minimization is to deploy a colony con-
sisting of individual robots capable of self-reproducing. An im-
portant consideration once such a colony is established is its
resiliency to large-scale environment or state variations. Previ-
ous approaches to learning and adaptation in self-reconfigurable
robots have utilized reinforcement learning, cellular automata,
and distributed control schemes to achieve robust handling of
failure modes at the modular level. This work considers self-
reconfigurability at the system level, where each constituent
robot is endowed with a self-reproductive capacity. Rather than
focus on individual dynamics, the hypothesis is that resiliency in
a collective may be achieved if: 1) individual robots are free
to explore all options in their decision space, including self-
reproduction, and 2) they dwell preferentially on the most favor-
able options. Through simulations, we demonstrate that a colony
operating in accordance with this hypothesis is able to adapt to
changes in the external environment, respond rapidly to applied
disturbances and disruptions to the internal system states, and
operate in the presence of uncertainty.

INTRODUCTION

Recent scientific research in self-reproduction has raised the
prospect of advances in such diverse areas as space colonization,
bioengineering, evolutionary software and autonomous manu-
facturing. Inspired by the work of John von Neumann [1], ex-
tensive study of self-reproducing systems has taken place, in-
cluding cellular automata, computer programs, kinematic ma-
chines, molecular machines, and robotic colonies. A compre-
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hensive overview of the field is documented in [2] and [3].

Within the context of extraterrestrial colonization, current
phased approaches to Martian exploration see the development
of an enduring robotic presence on the Moon in the next five
years. Several space agency roadmaps, of which [4] is typical,
suggest that individual countries will deploy advanced robots
as-needed to expand the size of an established colony. It is
well known, however, that for every unit mass of payload to
be launched into space, eighty additional units of mass are re-
quired to be launched as well [5] — hence the motivation to endow
robots with the capacity for self-reproduction. These machines
would be able to utilize on-site resources to enlarge their num-
bers when deemed necessary for a given task. Extraterrestrial
systems with such capability are less dependent than traditional
colonies on the fiscal constraints of multiple launches of robots.
Self-reproduction may therefore provide a highly cost-effective
solution to the problem of establishing extraterrestrial colonies.

The remainder of this section presents a rationale for
investigating technology that enables an extraterrestrial self-
reproducing system to be resilient to changes in the environment.
In the next section we highlight theory that enables a novel solu-
tion to the resiliency problem. The following sections deal with
system modeling, validation, and the simulated results of co-
operative reproduction to achieve a self-reconfigurable system.
The last section presents conclusions.

Motivation

In a landmark conceptual study on a self-replicating lu-
nar factory [6], a system that included paving, mining, casting,
and mobile assembly and repair robots was proposed. Inspired
by this work, [7] suggested a factory system comprising self-
replicating multi-functional robots that could mine and transport
materials and components within a lunar manufacturing facility.
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The work also demonstrated the feasibility of a self-replicating
robot with a prototype made of LEGO Mindstorms components.
At the same time (and in the years since), a number of re-
searchers have developed modular self-replicating and/or self-
reconfigurable robots (see, for instance, [8—13]). A current sur-
vey of the state of the art and the challenges facing modular, self-
reconfigurable robot systems is given in [14], and a vast listing
of papers in the field is available online at [15]. As these refer-
ences and those therein indicate, the focus has shifted to provable
control of the modules of a single self-reconfigurable robot — the
realization of various topologies, efficient and distributed control
of a large number of modules, recovery from module failures,
and even module self-repair [16, 17]. Approaches for local con-
trol include reinforcement learning [18], cellular automata [19],
and hormone-inspired swarming for self-organization [20].

By virtue of the harsh environment an extraterrestrial robotic
colony operates in, the robots in [6] and [7] would need to
learn, adapt, and possibly evolve to be tolerant of external dis-
turbances that can affect the collective’s overall goals. Hence,
this paper examines the performance of a system consisting of
multiple robots, where each individual robot is capable of self-
reproduction. This self-reproduction is a distinguishing feature
that the modules in the robotic systems [8—13] are incapable of.

Robustness in complex systems has been previously studied,
using the Highly Optimized Tolerance conceptual framework for
example [21,22]. While these references document complex sys-
tems that are generally robust, an inescapable characteristic of
the systems is their fragile nature, in that small disturbances can
cause catastrophic cascading failures. However, there are nu-
merous instances of autonomous robustness as well as resiliency
to small and large environment fluctuations in complex natural
systems. Examples include physiological regulation in multi-
cellular organisms; group regulation in colonies of social insects;
the evolution of species through adaptation and natural selec-
tion; and the rebounding of complex systems from earthquakes,
tsunamis, hurricanes, asteroid strikes, etc. The apparent lack of
resiliency in a robust complex system, as well as the additional
capacity for self-reproduction, motivate this work.

Thus, given an extraterrestrial self-reproducing system with
defined objectives (e.g., the mining of resources), the goal of this
paper is to address open questions on: the adaptation to changes
in the external environment; the rapid response to applied dis-
turbances and disruptions to the internal system states; and, the
operation of the collective in the presence of uncertainty.

THEORETICAL BACKGROUND
The theoretical framework of this paper is Generation The-
ory [23], and the Theory of Rational Behavior [24].

Generation Theory

Generation Theory [23] formalizes self-reproduction by
“machines,” a term describing any entity that is capable of pro-
ducing an offspring regardless of its physical nature. These ma-

chines utilize resources to self-reproduce. A selected resource is
manipulated by the parent machine via an embedded generation
action to produce an outcome, which itself may or may not be a
machine. Thus, we can state the following:

Definition 1. A generation system is a quadruple T’ =
(U,M,R,G), where

U is a universal set that contains machines, resources and
outcomes of attempts at self-reproduction;

M C U is a set of machines;

R C U is a set of resources that can be utilized for self-
reproduction; and,

G : M x R — U is a generation function that maps a machine
and a resource into an outcome in the universal set.

It is possible that M NR # @, and also M UR # U, as illus-
trated in Fig. 1. The former implies that machines can belong
to the set of resources, and the latter states that outcomes of at-
tempts at generation may be neither machines nor resources.

Figure 1. PICTORIAL REPRESENTATION OF DEFINITION 1.

When a machine x € M processes a resource r € R to gener-
ate an outcome y € U, we write:

y=G(x,r). 1)

In (1), we say that “x is capable of generating y,” and call the
process reproduction. If we have x = G(x,r) then we say that “x
is capable of generating itself,” and call the process replication.
We also make use of concepts from graph theory [25] in this
paper. Equation (1) may be represented by a directed reproduc-
tion graph, v, as shown in Fig. 2. In this diagram, machine x and
outcome y are vertices, resource r is an edge, and the direction
of the edge indicates that it is machine x that uses resource r to

generate outcome y.
X
OX

y

Figure 2. THE DIRECTED REPRODUCTION GRAPH OF (1).
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Definition 2. The directed graph representation of a generation
system I = (U,M,R,G) is the directed supergraph (V,E) con-
taining all directed reproduction graphs that produce machines
in M. Thus the vertex set, V, of the supergraph is equal to the
machine set, M, and the edge set, E, of the supergraph is the set
{reR|3Ix,yeM:y=G(x,r)}.

Hence, depictions of generation systems only show the ma-
chines that are produced rather than all possible outcomes.

Theory of Rational Behavior

The Theory of Rational Behavior [24] seeks to explain a re-
markable property of the collectives that appear in nature. These
collectives, which have different fractions of professions as in
beehives for example, maintain an appropriate fractional distri-
bution among the various social functions even if one of the
castes is removed. The theory proposes an axiomatic behavior
of individuals, examines the resulting behavior of a collective,
and identifies the properties of systems of many elements.

Individual Behavior. Rational Behavior first introduces
a metric phase space X, which is the space of all possible deci-
sions. It considers the decision-to-decision process as a dynam-
ical system xg v (x0,%0,1), x € X, where xo is the initial decision
at fp, the initial time, ¢ represents time, ¢(x) is a scalar func-
tional parameter, and N is an integer parameter, N € {1,2,...}.
We have x¢ y(x0,%0,%0) = xo. Also introduced in X is a continu-
ous positive normalized measure u. Let & be a class of positive
scalar functions ¢(x), x € X, such that

(a) ¢(x) is bounded and measurable;

(b) every nonzero Lebesgue measure neighborhood Ag(¢g) [mes
Ao(0p) > 0] of an arbitrary value ¢y of a function ¢ is the
image of By C X also of nonzero measure (uBgy > 0).

Finally, let B be an arbitrary y-measurable set in X' (uB > 0) and
B' C X be the pre-image of a sufficiently small neighborhood of
the value ¢' of the function ¢(x).

Definition 3. The behavior of an individual taking decisions
xo.N(x0,10,1), § € D, N € {1,2,...}, in the space X is said to be
rational if the following two properties hold:

Ergodicity: For almost all (in the measure u) points xo € X,

e
fim 2 J, X (xo.v (x0,10,1)) dt = P o(N) > 0,

T —oo

where yp is the characteristic function of the set B:

)1, ifzeB,
XB(Z)_{O, ifz¢ B.

Selectivity: For almost all (in the measure u) points xy € X,

limT*;oo % fOT XBi (XQ),N(XOJOJ)) dt

; = Tpi pj, (N)
limy e % fOT XBj (Xq,,N(xO,to,t))dt B4
oo, ifo' < ¢/,
ST S B Bl if g =0,
0, ifo' > ¢/,

B NB/ = 0.

As a result of ergodicity, the individual explores the whole
decision space. From selectivity, we see that ¢(x) may be re-
garded as a penalty function, the consequence of taking decision
x. In addition, less penalized decisions are pursued as N gets
larger. Thus, N may be regarded as an indication of the “level of
selectivity” of an element, with more selective individuals pos-
sessing a higher value of N.

Collective Behavior. To extend Rational Behavior to
a collection of individuals, the penalty function is modified to
depend on the collective’s behavior in addition to an individ-
ual’s behavior. As a result, the penalty for the i-th individual is
&(x1,...,X,...,xp), where M is the number of individuals in the
collective. A brief summary of the collective’s behavior modeled
under Homogeneous Fractional Interaction follows.

Suppose that there are two options x; and x; in the deci-
sion space X, and at the initial time fy, m(fo) individuals are in
x1. Thus, M — m(ty) individuals are in x,. Define the fraction of
individuals in x; as v =m(ty)/M, v € [0,1]. The fraction of indi-
viduals in x5 is then v, = 1 —v. Let the penalty of the collective
be a scalar function of the state of the collective, f(v) > 0. Then
the penalty of the i-th individual in the collective is:

| 2

), ifin xq;
= fv—15), ifinx.
for all individuals in the collective. This model holds for deci-
sion spaces of arbitrary size. Thus, the penalty for each individ-
ual is the same (i.e., homogeneous), and depends on the fraction
of the collective’s individuals in a particular decision (i.e., frac-
tional). While individuals may switch from one decision to an-
other, equal fractions result in equal penalties. The goal here is to
use rational individual behavior to have elements figure out what
is best for them, converge to the best fraction of individuals in a
particular decision, and simultaneously realize an optimal value
of the collective behavior penalty function. This process is rep-
resented in Fig. 3, where v* is an optimal fraction for the penalty
of the collective.
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Figure 3. PENALTY VERSUS FRACTION OF THE COLLECTIVE.

SYSTEM MODELING AND VALIDATION

To facilitate the combined implementation of Generation
Theory and the Theory of Rational Behavior to a model of an
extraterrestrial self-reproducing robotic colony, we start with a
trivial scenario under restrictive assumptions and then systemat-
ically remove these assumptions to obtain a generally-applicable
collective model. The posed scenario is based on the simplified
requirements of a lunar robotic colony, as outlined in the moti-
vation. Two types of self-replication are discussed: single step
self-replication and multiple step self-replication.

Single Step Self-Replication

Consider the case where one seed machine starts a robotic
colony, and this machine is only capable of degenerate repro-
duction [23] (see Fig. 2), i.e., all offspring produced by the seed
robot are themselves incapable of reproduction.

We make the following assumptions:

(1) The seed robot has to decide between two possible tasks,
mining and reproduction. The seed robot has to be occupied
with either one of these tasks at each time step.

(2) The environment possesses inexhaustible resources that can
be mined. Each time step that the seed robot spends mining
augments a collection of resources. During a time step spent
in reproduction, one resource is converted directly into an
offspring machine.

(3) Offspring machines are incapable of mining, and since they
are degenerate, are also incapable of reproduction.

In this restrictive setting, suppose that the seed machine is
subject to an arbitrarily chosen penalty function of fixed cost:

0(x) —1, if the seed robot mines;
X) =
—2, if the seed robot reproduces.

At each instant, the seed robot has an external penalty imposed
as a result of taking one of the two possible decisions at that time
step. Let the seed robot be capable of perfectly estimating the

reward for the i-th decision x;, and this estimate is d;. Further,
suppose we allow memory so that the seed machine is capable of
remembering the reward received for a particular decision. One
model for the decision dwelling times 7, for this element with
level of selectivity N is the following:

N N
T, =T, <ZT> if switching to xi, 3)

~ NN
T,, = T, <Z;> if switching to x,. “)

Because of the strong assumptions, the use of memory, and per-
fect estimation, a seed robot is quickly able to figure out that the
best option is to spend a greater period of time mining rather than
reproducing. Fig. 4(a) demonstrates this when N = 1, and Fig.
4(b) illustrates the effect of incrementing N by 1 once all possi-
ble decisions have been taken. In both instances, the rationality
is independent of the starting decision state.

Reproduce

(il
UL

Mine

0 10 20 30 40 50
Time Step
(@ N=1

Reproduce

Mine

0 10 20 30 40 50
Time Step

(b) N IS INCREMENTED FOR EVERY TOUR OF THE DECI-
SION SPACE

Figure 4. PREFERENTIAL SELECTION OF DECISIONS.
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Let us now relax some of the assumptions made previously.
We allow offspring machines the capacity to mine, although they
are still degenerate and unable to reproduce. Let M represent the
total number of machines in the colony. Thus, at every time step,
the M — 1 offspring mine to each produce one unit resource. We
no longer consider resources to be plentiful, and the colony is ini-
tiated with zero resources amassed. Mining is therefore required
to stockpile resources, and the maximization of the total number
of resources, R, is taken to be indicative of a successful colony.
Accordingly, the penalty function for the seed robot becomes:

¢(x) =Yl

_71 if the seed robot mines,
= if the seed robot reproduces.

We also associate a cost to reproduction, R, , the value of which
determines the number of resources needed to produce an off-
spring machine. Hence, we now have dynamic coupling be-
tween R and M through R.,;. These dynamics are given by
the following time step updates. If the seed robot mines, then
R+— R+M x 1 =R+ M, and if the seed robot reproduces, then
R—R+(M—1)x1—R,p and M < M+ 1. Thus, reproducing
depletes the current store of resources.

As expected, there is an initial delay in decision space ex-
ploration while enough resources are stockpiled for reproduction
(Fig. 5(a)). This is followed by the realization that resource max-
imization occurs through the exclusive pursuit of a mining strat-
egy. The greedy nature of rational elements is illustrated in Fig.
5(b) where R.,s;s = 0. The seed robot sees fit to continuously re-
produce and have its increasing numbers of progeny maximize
the resources of the collective.

To prepare for a collective that is capable of replication, we
revise the goals so that a maximum of both resources and ma-
chines are produced. The penalty function gets modified to:

¢(x) =3Y-1

_71 if the seed robot mines,
o7 1if the seed robot reproduces.

The directed graph representation of such a generation system is
indicated in Fig. 6.

Multiple Step Self-Replication

It is unlikely that robotic self-replication can be achieved in
a single step; as demonstrated in [7] however, self-replication is
possible as a multiple step process. It is instructive to model the
directed graph representation of this robotic system (Fig. 7). We
take M to be the set of all entities that are made up of two or more
LEGO Mindstorms kit components fixed together in some way.
Let

M = {x1,x2,x3,X4,X5,X6,X%7,X8, X9 }, and

R = {rl,rz,rg,m,r5,r6,r7,rg,r9}.

Reproduce

Mine

40 60 80 100
Time Step

(a) Rcoxt = 10, N=1

Reproduce

Mine

40 60 80 100
Time Step

() Reosr =0, N=1

Figure 5. DECISION SELECTION.

r
Q
X

Figure 6. SELF-REPLICATION.

rg = (x7,x3)

X9

Figure 7.  THE SUTHAKORN-KWON-CHIRIKJIAN ROBOT.
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For notational purposes, if machine x; belongs to an ordered
list of the elements of resource r;, then we say that x; is con-
tained in rj, and we write x; < r;, where “<” is the containment
relation. The following definitions and sequence of generation
steps produce the directed graph representation of Fig. 7.

X] := prototype robot

r1 := (conveyor-belt/sensor unit, docking unit, electrical connector, central
controller unit (CCU), electrical cable)

X2 := chassis assembly station

x2 = G(xy,r1)

rp := chassis

x3 := chassis aligned in assembly position

x3 = G(x1,1)

r3 := (robot control system, x3)

x4 := RCX-chassis assembly

x4 = G(x2,13)

r4 := gripper assembly/disassembly station := (CCU, electrical connector,
ramp and lift system, gripper)

X5 := prototype robot with gripper

x5 = G(x1,r4)

x1 = G(xs,r4)

rs := (left LEGO hook, right LEGO hook, CCU, electrical connector, sta-
tionary docking sensor, motorized pulley unit)

X := motor and track assembly station

x6 = G(xs,75)

re := (left LEGO track, right LEGO track)

x7 := tracks aligned onto hooks

x7 = G(x1,76)

r7 := (motor/sensor unit, x4)

xg := RCX-chassis-motor assembly, moved to position

x3 = G(x1,r7)

rg := (x7, xg)

X9 := prototype robot on hooks

x9 = G(x,713)

r9 i= X9

x1 = G(x1,r9)

Figs. 6 and 7 are very similar. Indeed, by aggregating re-
sources 1 through 9 and machines 2 through 9 into one super-
resource, the multiple step replication process can be converted
into the single-step replication process modeled previously. This
super-resource would have a higher associated reproductive cost,
and so the effect of reproductive cost on self-replication needs to
be investigated. Since single step self-replication captures the
essence of multiple step self-replication, we limit our future dis-
cussion to single-step replication models only.

COOPERATIVE REPRODUCTION

We incorporate the theory of Homogeneous Fractional Inter-
action into the single step self-replication model to analyze the
self-reconfigurability of the collective. In this scenario, all off-
spring are non-degenerate, and are hence capable of both mining
and reproducing at any given time step. We seek to determine
the appropriate fraction of mining robots for a particular repro-
ductive cost. The penalty function for the i-th robot is:

=1 if the robot mines,

0i(x) = —Rl

o7  if the robot reproduces.

For a reproductive cost R.,ss = 1, it turns out that the optimal
fraction of the colony engaged in mining activities is ~ 0.25.
This is depicted in Fig. 8 for 30 time steps, at the end of which
there are 57,671 individuals in the robotic colony.

0.8

0.6

Fraction of Robots That Mine

0 5 10 15 20 25 30
Time Step

Figure 8. TIME HISTORY OF FRACTION OF MINING ROBOTS FRAC-
TION, Reor = 1, N = 1.

Adaptation of the Collective

We have previously indicated that the reproductive cost can
vary if there is an increase in the number of steps required for
self-replication. Alternatively, the cost of mining for resources
can increase due to changes in the colony’s surroundings, caus-
ing a corresponding increase in the reproductive cost. Thus, one
mechanism for investigating the adaptability of a robotic colony
to environmental disturbances is to determine the collective’s re-
sponse to changes in the reproductive cost.

Consider the reproductive cost shown in Fig. 9, where there
is an increase in R,y from 1 to 5 at the twentieth time step. The
fraction of the colony engaged in mining activities is illustrated
in Fig. 10. Once the reproductive cost changes, the collective
quickly adapts and increases the fraction of individuals that are
mining for resources to ~ 0.7, although oscillations to the frac-
tion are now magnified. After 40 time steps, there are 37,948
individuals in the robotic colony.

Response to Internal Disturbances

We require an extraterrestrial robotic colony to respond
rapidly to applied disturbances and disruptions to the internal
system states. Examples of disruptions include the eradication
of a caste or the sudden specialization of a part of the collec-
tive (by the creation of a new caste) to take advantage of novel
conditions in the environment. In our model of the colony, sup-
pose that the ability to process resources (e.g. through casting
or finishing) suddenly appears. The use of processed resources
for reproduction generates the same type of robots as we had

Copyright © 2008 by ASME



0 10 20 30 40
Time Step

Figure 9. TIME HISTORY OF REPRODUCTIVE COST.

Fraction of Robots That Mine

0 10 20 30 40
Time Step

Figure 10. TIME HISTORY OF MINING CASTE, N = 1.

previously, and the reproductive cost now consumes the store of
processed resources, P, instead of the store of raw resources. We
include a typical advantage to using processed resources — that
of a slower rate of depletion, Py, of raw resources. Specif-
ically, the dynamics of R, M, and P are coupled through R,
and P,y as indicated by the following time step updates. If
a robot mines, then R «— R+ 1; if a robot reproduces, then
P «— P—R s and M «— M + 1; and if a robot processes resources,
then R < R— P,,5, and P «+— P+ 1. We stipulate that P,y < Reost-
The penalty function for the i-th robot now becomes:

if the robot mines,

0i(x) =

if the robot reproduces,

=| L] L[

if the robot processes resources.

The goal is to demonstrate that our model of a collective
takes advantage of an internal disturbance by reconfiguring the
colony to maximize the store of raw resources. Fig. 11 shows
that a new caste emerges quite rapidly at the expense of both of
the old castes. The constant decline in the fraction of mining

robots at the end of the simulation period may be attributed to
the plentiful store of resources and the realization that fewer raw
resources are required to expand the colony. After 40 time steps,
there are 49,568 individuals in the robotic colony.

. == Mining Robots i
i = = = Reproducing Robots
!

o
©

.
-

e
=

o
(2]
-5

I
~

Fraction of Robots In Caste

o
[N

10 20 30 40
Time Step

o

Figure 11. TIME HISTORY OF MINING AND REPRODUCING
CASTES, Reost = 1, Pogy = 0.5, N = 1.

Effect of Environmental Uncertainty

Here, we include the effect of noisy measurements in our
model of single step self-replication. Each robot senses the
penalty of the collective in a variable manner, that is, every es-
timate 4 is corrupted by a Gaussian random variable with zero
mean and unit variance. The effect of this noise over the first
few time steps is to delay the approach of the fraction of mining
robots to ~ 0.25 (see Fig. 12). However, the colony is able to re-
ject the noise in their individual measurements and determine the
appropriate fraction of individuals in each caste. After 30 time
steps, there are 55,116 individuals in the robotic colony.

Fraction of Robots That Mine

0 5 10 15 20 25 30
Time Step

Figure 12. TIME HISTORY OF MINING CASTE WITH UNCERTAIN
MEASUREMENTS, Repsr = 1, N = 1.
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Conclusions and Future Work

This paper has combined Generation Theory and the Theory
of Rational Behavior to investigate the self-reconfigurability of
an extraterrestrial robotic colony. Through simulations, we have
demonstrated that the colony is able to adapt to changes in the ex-
ternal environment, respond rapidly to applied disturbances and
disruptions to the internal system states, and operate in the pres-
ence of uncertainty. Avenues for future work include incorporat-
ing the process of natural selection (in the form of probabilities
and fitness functions) to the behavior of a collective. Such an
analysis could demonstrate the emergence of evolutionary traits
with time. The work in this paper can be extended to a decision
space with a greater number of options. Finally, a corroboration
of the simulations with hardware experiments is required.
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