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ABSTRACT In cellular regulatory networks, genetic ac-
tivity is controlled by molecular signals that determine when
and how often a given gene is transcribed. In genetically
controlled pathways, the protein product encoded by one gene
often regulates expression of other genes. The time delay, after
activation of the first promoter, to reach an effective level to
control the next promoter depends on the rate of protein
accumulation. We have analyzed the chemical reactions con-
trolling transcript initiation and translation termination in a
single such ‘‘genetically coupled’’ link as a precursor to
modeling networks constructed from many such links. Sim-
ulation of the processes of gene expression shows that proteins
are produced from an activated promoter in short bursts of
variable numbers of proteins that occur at random time
intervals. As a result, there can be large differences in the time
between successive events in regulatory cascades across a cell
population. In addition, the random pattern of expression of
competitive effectors can produce probabilistic outcomes in
switching mechanisms that select between alternative regu-
latory paths. The result can be a partitioning of the cell
population into different phenotypes as the cells follow dif-
ferent paths. There are numerous unexplained examples of
phenotypic variations in isogenic populations of both pro-
karyotic and eukaryotic cells that may be the result of these
stochastic gene expression mechanisms.

In all organisms, networks of coupled biochemical reactions
and feedback signals organize developmental pathways, me-
tabolism, and progression through the cell cycle. For example,
overall coordination of the cell cycle results from an overar-
ching set of dependent pathways in which the initiation of late
events is dependent on the earlier events and the whole
operates as a form of biochemical machine. Within these
regulatory networks, genetic activity is controlled by molecular
signals that determine when and how often a given gene is
transcribed. Additional signals stimulated by environmental
influences or by signals from other cells can affect the ongoing
reactions to influence the future course of cellular events.
Since a regulatory protein may act in combination with other
signals to control many other genes, complex branching net-
works of interactions are possible. In these nets, one regulatory
protein can control genes that produce other regulators, that
in turn control still other genes.
How long does it take for these messages and controlling

influences to move through a regulatory cascade? In biochem-
ical regulatory networks, the time intervals between successive
events are determined by the inevitable delays while signal
molecule concentrations either accumulate or decline. Genet-
ically coupled links are links where the protein product en-

coded by one gene regulates expression of other genes. The
time delay in genetically coupled links (Fig. 1) depends on the
time required for protein concentration growth, after pro-
moter activation, to the concentration range that controls the
next level in the cascade. Conversely, the time delay after the
controlling promoter turns off depends on the time for the
protein concentration to decay below the effective range. Fig.
1B shows a common architecture for such genetically coupled
links. In these links, for appropriate combinations of input
signals, transcripts are initiated and the protein product ac-
cumulates when production exceeds degradation; the increas-
ing protein concentration simply broadcasts the information
that the promoter is ‘‘on.’’ The message is ‘‘received’’ or
detected by the concentration-dependent response at the
protein signal’s site(s) of action, stimulating a response at each
site in accord with that site’s chemical behavior. (We use the
term ‘‘protein signal’’ to mean the regulatory protein concen-
tration in its effective form at its site of action.)
In this paper we examine the properties of a single geneti-

cally coupled link as a precursor to modeling networks con-
structed from many such links. Specifically, we ask what
determines the time required for protein concentration to
grow to effective signaling levels after a promoter is activated
and how statistical variations in this time can affect observed
cellular phenomena across a cell population. It has been
proposed that the pattern of protein concentration growth is
stochastic, exhibiting short bursts of variable numbers of
proteins at varying time intervals (2, 3). (Herein the term
‘‘stochastic’’ is used in the statistical sense of resulting from a
random process.) We formalize and quantify this notion of
randomness in genetic regulatory mechanisms by explicitly
characterizing the statistics of the random processes implicit in
the chemical reactions (4). By analogy to electrical circuits, we
will refer to this time interval between the switching on of the
first promoter and activation or repression of the second
promoter as a ‘‘switching delay.’’ There is also a switching delay
of a different magnitude for the inverse functions when the
controlling promoter is switched off. We are neglecting here
the case where multiple molecules act combinatorially to
determine the controlling action.
Then, as a concrete illustration of switching delays over a

genetically coupled link, we simulate a representative link
using parameters characteristic of links in bacterial regulatory
networks. The simulation results show that short-term fluctu-
ations in protein production can be large relative to signal
thresholds that control expression of critical genes. For the
same link in different cells of the same genotype, there will be
wide random variations in both the times to produce a given
protein concentration or in the number of proteins produced
when the promoter is transiently activated. Implications of this
noisy pattern of gene expression for cellular regulation include:
(i) the switching delay for genetically coupled links, hence the
time for the cell to execute cascaded functions, can vary widely
across isogenic cells in a population; (ii) the overall regulatory
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circuit design is probably strongly driven by the needed deter-
minism in outcome for circuits constructed from these highly
noisy components; and (iii) stochastic simulation techniques
must be used to model regulated networks where high noise
levels in parts of the network can produce statistical variation
in phenotypic outcomes.
There are numerous unexplained observations of pheno-

typic variation in isogenic or clonal populations. The origin of
the randomness is poorly understood; we suggest that it may be
a consequence of the stochastic mechanisms in gene expres-
sion described here. One example is the distinctive individual
chemotactic responses observed in clonal bacterial cells grown
in homogenous conditions that persist over the cell lifetimes (5,
6). A second example is phase variation in Escherichia coli
expression of type 1 pili in isogenic bacterial populations
(7–10). A third example is the biochemical mechanism leading
to the distribution of generation times of cells in growingE. coli
cultures. The observed coefficient of variation of generation
times is around 0.22 (11–13). One consequence of these
differing times between cell divisions is progressive desynchro-
nization of initially synchronized cell populations. Within a
single cell, random variations in duration of events in each

cell-cycle controlling path will lead to uncoordinated varia-
tions in relative timing of equivalent cellular events. Check-
points that resynchronize cell cycle events periodically are one
strategy used by cells to deal with this phenomenon.
Quantitative analysis of the mechanisms underlying all these

phenomena requires a statistical description of outcomes and
explicit modeling of the stochastic mechanisms in the control
logic.

Statistics of Prokaryotic Protein Production Mechanisms

In the following two sections we propose stochastic models for
timing of signal protein production in prokaryotes applicable
when the transcript initiation reactions are separate from the
reactions controlling the number of proteins produced per
transcript. These two models are closely based on experimen-
tally characterized mechanisms for these functions, and they
determine the statistical probabilities used in the stochastic
simulation algorithm described below. The stochastic simula-
tion is used to predict the patterns of signal protein production
that determine switching delays.
Statistics of Transcript Initiation Intervals. For many pro-

karyotic promoters a two-step reaction scheme, R 1 PN RPc
N RPo, describes the formation of an RNA polymerase
(RNAP) open complex where R is the RNAP, RPc is the
closed complex, and RPo is the open complex (14). RNAP
initiates transcription only from the open complex. The closed-
to open-complex isomerization step is usually rate limiting
(14). The subsequent energy-driven elongation reactions are
strongly forward-biased, so the transcribing RNAP clears the
polymerase binding site within a few seconds. Shea and Ackers
(15) have proposed a quantitative physical–chemical model,
which includes regulation of the promoter activity by one or
more competitively binding effector molecules. A key assump-
tion in the Shea–Ackers model is that there is rapid equilib-
rium between free RNAP and that bound to the promoter in
closed form. Under these conditions, the slowly changing,
instantaneous rate for transcript initiation at each promoter is
proportional to the product of the fractional saturation of the
promoter by RNAP and the rate constant governing the
isomerization reaction. Thus, we can consider transcript ini-
tiation as a single reaction characterized by a single rate
constant, which is unchanging over sufficiently short time
intervals. In the stochastic formulation of chemical kinetics a
reaction probability per unit time parameter corresponds to
the macroscopic rate constant parameter (16, 17). At any
instant, each promoter will have a near-constant (i.e., very
slowly varying) probability of transcript initiation per unit time
and therefore an exponential distribution of the time intervals
between successive transcripts. Thus, the probability for a
transcript initiation reaction in the small time interval Dt is
(1yTavg) exp(2 tyTavg) Dt, where t is time and Tavg is the
instantaneous time parameter of the exponential distribution
equal to the average transcript initiation interval, as deter-
mined by the underlying reactions. (In the results shown below,
for transcript initiation reactions we have also included the
short interval of blockage, while a newly formed open complex
clears the promoter region.) The variance of the exponential
distribution is (Tavg)2 and the distribution is highly skewed
about the mean. Thus, 63% of the intervals will be shorter than
the average; about 1 in 20 intervals will be more than 3 times
the average interval.
Statistics of the Number of Protein Molecules Produced per

Transcript. The coupling between transcription, translation,
and mRNA degradation has been examined carefully for the
lacZ gene (3). Changes in the level of b-galactosidase expres-
sion and the lacZ mRNA level were observed to be highly
correlated over a 200-fold range of b-galactosidase expression
in E. coli. Additionally, ribosome spacings on bacterial mRNA
are observed to be no more than a few ribosome diameters

FIG. 1. (A) A common coupled-reaction architecture for trans-
mission of information or control in one link in a genetically coupled
regulatory cascade. The promoter controls the transcript initiation
rate. Each transcript leads to a pulse of protein production from
downstream genes. Signal concentration at any time is determined by
the cumulation over time of protein production and losses. The
concentration of the effective form of a signal protein is sensed and
responded to at its site(s) of action. The active form of protein signals
is commonly a multimer; we assume a dimer here. Duplicate operator
sites binding the same protein are also a common motif [true of 43%
of 76 repressible promoters known in 1991 (1)]. P, Pi, proteins; PRx,
promoter for protein x. (B) A representative autoregulating prokary-
otic genetic circuit where the protein product controls its promoter.
Autoregulation often serves to stabilize protein concentrations in a
range that establishes sustained activation (or repression) of several
controlled promoters.
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independent of the level of gene expression. Prokaryotic
ribosomes bind to the mRNA as soon as it is accessible behind
the transcribing RNAP. Multiple ribosomes spaced about 80
nucleotides apart simultaneously translate the emerging tran-
script, tracking closely behind the RNAP until the transcript is
released. After release of the first protein, additional proteins
are completed every several seconds as successive ribosomes
reach the end of the reading frame.
The explanation for these observations, suggested in ref. 3

and argued therein to be broadly applicable, hinges on the
proximity on the mRNA of the ribosome binding site and the
binding site for RNase E (3, 18, 19). (The mRNA stability is
controlled by RNase E, which ultimately initiates degradation
of the mRNA.) Because RNase E cannot bind when its binding
site is occluded, a ribosome that binds at the ribosome binding
site protects the mRNA from degradation until the site is again
exposed as the ribosome translates the mRNA. Most ribo-
somes that have initiated translation produce a functional
protein. Thus, as shown in Fig. 2A, at each exposure of the
ribosome binding site and RNase E sites on the mRNA, there
is a direct competition between ribosome and RNase E
binding. This competition leads either to successful translation
and production of a protein or to degradation or inactivation
of the transcript. (This model is applicable for the case where
expression exceeds a threshold of about one translation event
per transcript.) Thus, the rate-limiting step in chemical decay
of the mRNA is an RNase E-dependent cleavage in compe-
tition with transcript initiation.
Fig. 2B shows an equivalent representation of this transla-

tion control mechanism focused on the transitions between
various binding configurations, assuming that the successive
ribosome–RNase competitions are effectively independent
trials. If we assume independent trials with constant proba-
bility p of ‘‘success’’ for ribosome binding, then the distribution
for the number of proteins produced will be the same as the
distribution of runs of ‘‘heads’’ from a biased coin with P(head)
5 p. A run of length N requires N ‘‘heads’’ followed by a ‘‘tail’’
so P(n 5 N) 5 pN(1-p), where n is the number of heads, or of
proteins from a transcript, in each trial. This is the geometric
distribution function. The mean of the geometric distribution
is Navg 5 py(1-p). Thus, for example, if Navg is 10 proteins, then
p ' 0.91; i.e., the ribosome binds in about 91% of the
opportunities. The geometric distribution is also highly
skewed; the variance is py(1-p)2 and P(n $ N) 5 pN. For Navg
5 10 proteins, 25 or more proteins will be produced from 9%
of the transcripts. Letting TD be the average time interval
between successive competitions, then the number of mRNA
messages Nmsg, surviving in the population versus time after
transcription is blocked would be Nmsg 5 N0msgzpt/TD. This is
equivalent to exponential message decay with half life Thalf 5
2(ln(2)yln(p))zTD.
The principal assumptions in this translation control model

are (i) that successive ribosome–RNase competitions are
independent trials and (ii) the binding competition determines
the outcome. The justification for i is the observation that the
chemical environment of all the successive competitions will be
similar, with the possible exception of the first event just as the
ribosome binding site is cleared from the RNAP. Justifications
for ii are the experimental observations that ribosome binding
almost always leads to protein production and RNase E
binding almost always leads to degradation.
Other Reactions Contributing to Concentration Fluctua-

tions. Degradation of the protein product, plus the forward
and reverse dimerization reactions shown in Fig. 1A, also
contributes to the stochastic noise in the protein dimer signal
concentration. Stochastic effects of these conventional reac-
tions are modeled by recognizing that macroscopic rate con-
stants are directly related to molecular-level reaction proba-
bilities and using a proven Monte Carlo simulation algorithm
to determine outcomes of the coupled reactions (17).

Switching Delays for Genetically Coupled Links

How can we characterize the statistics of switching delays for
the common type of bacterial genetically coupled links (Fig. 1)
that result from the stochastic protein production mechanisms
described above? Our approach is to estimate switching delays
for a stochastic simulation of the coupled chemical reactions
with representative parameters for links in bacterial regulatory
networks.
Stochastic Simulation Algorithm. Solutions to the stochastic

formulation of coupled chemical reactions can be computed
using the Monte Carlo procedure described by Gillespie (17).
This algorithm calculates a stochastic description of the tem-
poral behavior of the coupled reactions, which can be shown

FIG. 2. Reaction model (A) and binding state model (B) charac-
terizing sequential competitions between ribosomes and RNase E at
two closely located sites on the transcript (denoted BS for binding
sites). Binding of either occludes the binding site of the other. After
ribosome binding leading to initiation of translation, the competition
recurs after a delay while the translating ribosome’s footprint clears the
two sites. This process repeats until RNase E binds and initiates
degradation of the transcript. Each competition is an independent
event with a probabilistic outcome. A transcript is initially in state 1
and thereafter in one of the five states shown in B. The number of
proteins produced, N, will be the number of times state 4 is traversed
before the process terminates in state 5.When the system is in any state
i, aij dt is the probability of transition to state j in time interval {t, t 1
dt}, where i and j each denotes one of the states {1, . . . , 5}.
Observations (see text) suggest that a24, a12 .. a21 and a35, a13 .. a31.
When the system is in state 1, the probability of another protein is
approximately (a12 a24)y(a121 a13)(a211 a24), neglecting higher order
transitions such as 1 3 2 3 1 3 2 3 4.
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to have a more rigorous physical basis than the conventional
chemical kinetics formulation. The key difference is that the
conventional kinetic equation formulation is based on the
assumption that changes in the chemical reaction system over
time are both continuous and deterministic. This assumption
is always invalid at low enough concentrations or slow enough
reaction rates and may not apply at higher concentrations and
rates if the system exhibits large, rapid, and discrete transitions.
In bacterial cells, intracellular concentrations of promoter–
operator regions are always low and the stochastic gene
expression mechanism described above produces ‘‘bursts’’ of
proteins from individual transcripts at random intervals. Con-
sequently, the assumption of continuity and determinism will
always be questionable for reactions involving gene expression
in the cell at low gene dosages. If the physical model and its
assumptions are valid, and parameter estimates are sound,
then the stochastic algorithm produces a more realistic and
complete description of the time-dependent behavior of such
systems than a deterministic calculation (17). The Gillespie
simulation algorithm calculates the probabilistic outcome of
each discrete chemical event and the resulting changes in the
number of each molecular species. By accumulating the results
for all reactions over time, the statistics of the inherent
fluctuations in the reaction products over time can be esti-
mated. In our link simulation, each run produces a represen-
tative pattern for the growth in signal protein concentration
and the resulting switching delay for that link in a single cell.
The distribution of switching delays for that link across a cell
population is estimated by performing multiple simulations.
Statistical sampling theory can be used to determine howmany
simulation runs must be included to achieve a target confi-
dence level.
What Are ‘‘Representative’’ Link Parameters? The combi-

nation of the exponential time distribution of transcripts and
the geometrically distributed number of proteins per transcript
largely determines the time pattern of protein production
initiated at a single promoter. The principal cellular parame-
ters determining these distributions are the inherent strength
of the promoter (considering any activating or repressing
effectors) and the relative binding strengths of the ribosome
and RNase to the mRNA transcript. These parameters can
have a wide range of values, and different genes, even in the
same operon, can have widely different translation rates (18).
In the link simulation, we use gene expression parameters (for
PRP1 in Fig. 1) that approximate those determining maximal
Cro expression from the PR promoter in phage l (15): open-
complex initiation rate 5 0.014 sec21; and Navg 5 10 proteins
per transcript. Protein concentration growth is affected by
additional parameters: rates of degradation and dimerization
reactions, initial cell volume, and the cell growth rate.
The simulated switching delay is the time required in each

run to accumulate the necessary concentration of proteins in
their effective form to activate or repress the controlled
promoter (PRP2 and PRP3 in Fig. 3). Most switching in
bacterial regulatory networks must be accomplished by a few
tens of molecules, since more than 80% of E. coli genes express
fewer than 100 copies of their protein product per cell cycle.
[The arguments for the low levels of expression of most genes
are summarized byGuptasarma (21).]We have assumed in this
analysis that the range of 25–50 nM is a representative range
over which the controlled promoter is activated or repressed
and switching of the controlled promoter is effected. (Our
conclusion that genetically coupled links can exhibit wide
random variability of switching delays is not sensitive to the
specific range assumed.)
Protein Signal Production Patterns. Fig. 3A shows three

simulation results for growth of the P1 dimer (Fig. 1) concen-
tration due to transcripts initiated at promoter PRP1 at a gene
dosage of 1 (one PRP1 promoter in the cell). Each of the three
runs shown exhibits a substantially different pattern of P1

concentration growth because of random differences in tran-
script initiation intervals, in transcription time, in the number

FIG. 3. (A) Three simulation runs for the onset of P1 dimer production
for the regulatory configuration in Fig. 1B. Each run is a different
realization of the pattern of the dimer concentration growth in an
individual cell. The pattern of protein expression can be quite erratic and
thus dramatically different in each cell. Rapid changes in dimer concen-
tration due to forward and reverse dimer transitions contribute to the high
frequency noise in the protein dimer signal. The broken lines are the
declining concentrations equivalent to 25 and 50 dimer molecules in the
growing cell. Parameters: P1 dimerization equilibrium constant5 20 nM;
dimerization kr 5 0.5 s21; P1 half-life, 30 min. Initial cell volume
comparable toE. coli of 13 10215 liters, doubling with linear growth (20)
in 45 min (12). (B) Mean and 6 1 s results for 100 runs at gene dosages
of 1, 2, and 4. The ‘‘s’’ values plotted are the 16th and 84th concentration
percentiles at each time point. At higher gene dosages, protein P1 is being
produced frommore genes; the concentration rises more rapidly, and the
effective concentration range will be reached quicker. In addition, the
dispersion in time to effectiveness (i.e., the switching delay) will be lower
for faster growing signals. (C) Activation level of a controlled promoter
(e.g., PRP3 in Fig. 1) assuming activation, A, is characterized by the Hill
equation with Hill coefficient 2: A 5 (Kh[P1P1]2)y(11 Kh[P1P1]2) where
[P1P1] is the P1 dimer concentration and Kh is the Hill association
constant, Kh 5 [KE]22. Curves are labeled by N;KE, where N is the gene
dosage and KE is the dimer-operator binding constant. Each curve
reflects only the mean concentration curve plotted in B. Activation (or
repression) of controlled genes in each cell and over the population will
differ widely around this mean value as shown in A and B.
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of proteins produced from each transcript, in protein degra-
dation, and in the dimerization reaction. Abrupt jumps in
dimer concentration (e.g., at the arrows) can result from
chance occurrence of either high protein output from a single
transcript or a closely spaced series of transcripts. Periods with
declining concentration are due to dilution and degradation
during periods with chance occurrence of some combination of
long inter-transcript intervals or low protein output from a
series of transcripts. Both long intervals with few proteins and
bursts of many proteins in a short time are common occur-
rences. Consequently, the concentration growth profile in each
cell can be quite erratic and distinctive. Significantly, single
‘‘bursts’’ of signal proteins can occasionally be large enough to
immediately activate or repress the controlled promoters.
Fig. 3B shows the mean and standard deviation of the

number of P1 dimers in the cell at each time for gene dosage
equal to 1, 2, and 4 calculated from 100 simulation runs at each
gene dosage. The horizontal lines at 25 and 50 nM delineate
the assumed critical range over which switching action is
effected. Table 1 summarizes, as a function of dosage, the
mean and 6 1 s times required to reach 25 and 50 nM in Fig.
3B. The results show that higher gene dosage produces pro-
portionately quicker time to effectivity and proportionately
lower uncertainty in that time. Fig. 3C shows representative
fractional activation of the controlled promoter (PRP3, Fig. 1)
using a Hill equation with Hill coefficient 2 as a proxy for a
moderately cooperative effector–promoter interaction (22).
The activation curves correspond to the mean concentrations
(bold lines) in Fig. 3B.
The principal observation from Fig. 3 is that switching time

in growing cells has considerable uncertainty. The uncertain-
ties shown are conservative in that we have assumed that the
controlling gene is switched on instantaneously. In fact, how-
ever, it will be controlled by earlier regulatory reactions and
will be activated over an interval as its controlling effectors
increase. Stronger promoters, higher gene dosage (or equiv-
alently in many cases, multiple promoters per gene), and lower
signal thresholds all act to reduce timing uncertainty.
Stochastic Protein Expression and Autoregulatory Loops.

Autoregulatory feedback loops in genetic circuits can lock
controlling protein signals on, in turn locking other signals
either on or off. Also, since an autoregulatory loop that is
locked on has a sustained level of transcript initiation, the
loops can establish sustained transcription from additional
genes in an operon other than the gene producing the auto-
regulating protein. The central role of autoregulation in bac-
terial genetic regulation is evident in statistics derived from a
1991 inventory of 107 s70 promoters then known in E. coli (1).
The promoters in that inventory are organized into 31 regu-
lons, each jointly controlled by one or more regulatory pro-
teins. Twenty-one (68%) of the principal 31 regulatory pro-
teins are autoregulating, i.e., they repress their own synthesis.
Four (13%) of the 31 are autoactivating, i.e., they activate their
own synthesis. Four of the regulatory proteins repress their
own synthesis, but are activators in regulating promoters for

other genes. One represses its own synthesis from a s70

promoter, but activates it from an overlapping s54 promoter.
The erratic and pulsative character of protein expression will

also affect the dynamics of autoregulated protein levels. We
also simulated the steady-state behavior of the phage l CI
autoregulating circuit that maintains lysogeny (results not
shown). For the particular case examined, the mean dimer
concentration was about 140 nM in the cell. However, the
simulated dimer concentration exhibited both high frequency,
low amplitude variation, and a slow meandering in the range
of about 6 20 nM around the 140 nM mean. This f luctuation
pattern is caused by the random production and decay reac-
tions affecting the number of autoregulating proteins. The
protein concentration fluctuates about the ‘‘steady-state’’
value (where the mean dimer degradation rate equals the
mean production rate) since at higher (lower) dimer concen-
trations, the mean degradation rate increasingly exceeds (is
less than) the mean production rate. The level and character
of such fluctuations in the autoregulated protein concentration
may be important aspects of a regulatory protein’s function in
the cell and can be estimated only by stochastic simulation.
Fig. 3B shows that rapid production of initial protein signals

reduces switching delay uncertainty. Rapid production can be
achieved with either a single strong promoter or by several
identical promoters in the cell acting simultaneously (higher
dosage). Sustained production at the initial high rate that
produces more rapid and definitive switching would have a
continuing high energy cost per unit time. If, however, the
promoters are autoregulated by a negative feedback loop, the
growing protein concentration will reduce rapidly the initial
high rate of protein production and establish a steady, but
lower, average level of ongoing transcript initiation at greatly
reduced ongoing energy cost. Thus, with the autoregulating
feedback loop, the cell can achieve rapid initial signal produc-
tion to reduce variance in switching delays without an energy
penalty.

Discussion

The average number of proteins expressed from a gene is the
product of the average transcript initiation rate and the
average number of proteins produced per transcript. Many
different combinations of promoter strength and relative
RNase and ribosome binding energies could lead to the same
average protein production rate. More frequent transcripts
and fewer proteins per transcript leads to more even produc-
tion, but at higher energy cost for transcript synthesis; con-
versely, less frequent transcripts and more proteins per tran-
script produces a noisier signal, but at lower energy cost. Thus,
there is a selection-driven trade-off between energy cost and
noise level in the resulting protein signal.
The analysis in this paper has emphasized the mechanisms

determining the pattern of protein signal growth and resulting
switching delays after a controlling promoter is turned on. The
time interval, after the controlling promoter is turned off, for
decay of a control protein to the level where it is ineffective will
also have a large random variation, but determined by differ-
ent mechanisms than those discussed above. Autoregulated
proteins, for one example, will have a broad concentration
distribution across the cell population at any time due to the
meandering of autoregulated signal levels discussed earlier.
Consequently, the time to decay below the level of effective-
ness will vary depending on the starting concentration.
Our observations regarding stochasticity of gene expression

and its implications are not strongly dependent on the specific
statistical distributions we postulate for transcript initiation
intervals and proteins produced per transcript. The erratic
time pattern of protein production we postulate will result so
long as (i) the statistical distributions of intertranscript inter-
vals and proteins per transcript are skewed and have long tails,

Table 1. Range of switching delays

Effective dimer
concentration,

NM Dosage

21s
time,
min

Mean time to
concentration,

min

11s
time,
min

25 1 10 20 —
50 1 — — —
25 2 4 6 10
50 2 9 16 28
25 4 2 3 6
50 4 4 6 10

Mean and 6 1s time for dimer count to reach 25 and 50 nM in an
E. coli cell for several gene dosages as determined from 200 runs of the
stochastic simulation at each dosage.

818 Biochemistry: McAdams and Arkin Proc. Natl. Acad. Sci. USA 94 (1997)



(ii) the number of reaction centers (promoters) in each cell is
small, and (iii) the mean intertranscript time interval is rela-
tively long. The deeper mathematical and physical implications
of skewed, long-tailed distributions widely found in physiology
are discussed in (23).
In the introduction we cited several unexplained stochastic

phenomena in prokaryotes. Eukaryotic cells also exhibit sto-
chastic differences between isogenic cells. For example, ex-
perimental evidence from several eukaryotic systems, includ-
ing cells infected with HIV-1 or the mouse mammary tumor
virus, suggests that transcription of individual genes occurs
randomly and infrequently (24, 25). Although the translation
control model discussed above is specific to prokaryotes, we
expect that eukaryotic translation mechanisms will also exhibit
stochastic behavior affecting phenotypic outcomes. The com-
mitment decision in human hematopoiesis is thought to have
a stochastic component (26). The cellular decision to express
the human CD2 gene in transgenic mice has also been shown
to be a stochastic event (27). Analysis of cell cycle times of
Swiss 3T3 cells under high and low serum conditions has
demonstrated that there are two ormore points in the cell cycle
where a stochastic mechanism regulates cell cycle progression
(28). Finally, evidence from population studies also suggests
that stochastic events during early development are responsi-
ble for nongenetic and nonenvironmental phenotype variabil-
ity. After a 30-year systematic effort to reduce genetic vari-
ability in laboratory mice, the residual irreducible variation is
attributed to random variations effective at or before fertili-
zation (29).
In summary, there is compelling evidence from many di-

rections that outcomes of regulated events in both prokaryotic
and eukaryotic organisms are not deterministic. Efforts to
produce clonal organisms in identical environments always
find an irreducible level of random variability in phenotypic
details. Our analysis of experimentally characterized mecha-
nisms of prokaryotic gene expression predicts that the tem-
poral pattern of specific protein production in individual cells
can be quite erratic and distinctive for each cell in a population.
It is a statistical certainty that occasional bursts of signal
proteins will be produced that are sufficiently large to com-
pletely activate or suppress controlled genes. Such events could
trigger an ensuing cascade with macroscopically observable
phenotypic consequences or they could decisively resolve
competitively regulated switching mechanisms to probabilis-
tically select one of several alternative paths. The cell can
exploit these inherent fluctuations to achieve nongenetic
diversity where this makes the population more capable of
surviving in a wide range of environments. Alternatively, when
the cell requires a deterministic outcome, regulatory circuit
design and reaction parameters that favor predictability and
stability in outcome will be evolutionarily selected. Also, one
would expect to find organization of the chromosome so that
genes for links with critical timing are replicated before their

time of expression to achieve higher dosage. We predict that
the stochastic character of fundamental mechanisms of both
gene expression and control of expression is an important
source of the observed stochasticity in cellular events.
Verification of this prediction requires detailed simulation

of a well-characterized regulatory system with multimodal
phenotypic outcomes using the methods described above to
compare predicted population statistics to observed statistics.
We are performing such an analysis using the proportion of
lysogens produced by phage l as a function of multiplicity of
infection as the model system.

This work was supported by Office of Naval Research Grant
N00014–96-1–0564. A.A. was partially supported by National Science
Foundation Grant CHE9109301 awarded to John Ross (Department
of Chemistry, Stanford University).

1. Collado-Vides, J., Magasanik, B. & Gralla, J. D. (1991) Micro-
biol. Rev. 55, 371–394.

2. Chapon, C. (1982) EMBO J. 1, 369–374.
3. Yarchuk, O., Jacques, N., Guillerez, J. & Dreyfus, M. (1992) J.

Mol. Biol. 226, 581–596.
4. Halling, P. J. (1989) Trends Biochem. Sci. 14, 317–318.
5. Spudich, J. L. &Koshland, D. E., Jr. (1976) Nature (London) 262,

467–471.
6. Koshland, D. E., Jr. (1978) Birth Defects 14, 401–415.
7. Gally, D. L., Bogan, J. A., Eisenstein, B. I. & Blomfield, I. C.

(1993) J. Bacteriol. 175, 6186–6193.
8. Schwann,W. R., Seifert, H. S. &Duncan, J. L. (1992) J. Bacteriol.

174, 2367–2375.
9. Orndorff, P. E. & Falkow, S. (1984) J. Bacteriol. 159, 736–744.
10. Klemm, P. (1986) EMBO J. 5, 1389–1393.
11. Tyson, J. J. & Hannsgen, K. B. (1985) J. Theor. Biol. 113, 29–62.
12. Plank, L. D. &Harvey, J. D. (1979) J. Gen. Microbiol. 115, 69–77.
13. Bremer, H. (1986) J. Theor. Biol. 118, 351–365.
14. McClure, W. R. (1980) Proc. Natl. Acad. Sci. USA 77, 5634–5638.
15. Shea, M. A. & Ackers, G. K. (1985) J. Mol. Biol. 181, 211–230.
16. Van Kampen, N. G. (1992) Stochastic Processes in Physics and

Chemistry (North–Holland, Amsterdam).
17. Gillespie, D. T. (1977) J. Phys. Chem. 81 (25), 2340–2361.
18. Ray, P. N. & Pearson, M. L. (1975) Nature (London) 253, 647–

650.
19. Kennell, D. & Riezman, H. (1977) J. Mol. Biol. 114, 1–21.
20. Kubitschek, H. E. (1990) J. Bacteriol. 172, 94–101.
21. Guptasarma, P. (1995) BioEssays 17, 987–997.
22. Cornish-Bowden, A. (1979) Fundamentals of Enzyme Kinetics

(Butterworths, London).
23. West, B. J. & Deering, W. (1994) Phys. Rep. 246, 1–100.
24. Ross, I. L., Browne, C. M. & Hume, D. A. (1994) Immunol. Cell

Biol. 72, 177–185.
25. Ko, M. S. H. (1992) BioEssays 14, 341–346.
26. Mayani, H., Dragowska, W. & Lansdorp, P. M. (1993) J. Cell.

Physiol. 157, 579–586.
27. Elliott, J. I., Festenstein, R., Tolaini, M. & Kioussis, D. (1995)

EMBO J. 14, 575–584.
28. Brooks, R. F. (1985) in Temporal Order, eds. Rensing, L. &

Jaeger, N. I. (Springer, Berlin), pp. 304–314.
29. Gartner, K. (1990) Lab. Anim. 24, 71–77.

Biochemistry: McAdams and Arkin Proc. Natl. Acad. Sci. USA 94 (1997) 819


