DRAFT June 7, 2011

Evidence-based annotation of proteins and transcripts in the
sulfate-reducing bacterium Desulfovibrio vulgaris Hildenbor-
ough

Morgan N Price*! , Adam M Deutschbauer! , Jennifer V Kuehl' |, Haichuan Liu?> , H. Ewa
Witkowska? , Adam P Arkin®

LPhysical Biosciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 977-152, Berkeley California 94720,
USA

2UCSF Sandler-Moore Mass Spectrometry Core Facility, Department of Obstetric, Gynecology Reproductive Sciences, Univeristy of
California San Francisco, 521 Parnassus Ave, Box 0665, San Francisco California 94143, USA

Email: Morgan N Price*- funwithwords26@gmail.com; Adam M Deutschbauer - amdeutschbauer@Ibl.gov; Jennifer V Kuehl -
jvkuehl@Ibl.gov; Haichuan Liu - Haichuan.Liu@ucsf.edu; H Ewa Witkowska - witkowsk@cgl.ucsf.edu; Adam P Arkin -

aparkin@Ibl.gov;

*Corresponding author

Abstract

Background: Desulfovibrio vulgaris Hildenborough is a model sulfate-reducing bacterium. Despite previous pro-
teomics and gene expression studies, little was known about the accuracy of its genome annotation or the structures
of its transcripts.

Results: We used high-resolution tiling microarrays and 5° RNA sequencing to identify transcripts. We combined
the transcripts with comparative analysis and proteomics data to make 505 revisions to the original annotation
of 3,531 proteins: we removed 255 (7.5%) proteins, changed 123 (3.6%) start codons, and added 127 (3.7%)
proteins that were missed. We identified the first nucleotide position for 1,124 transcripts. Sequence analysis of
these promoters showed that D. vulgaris 00 prefers a different -10 box and -35 box than Escherichia coli c™° does.
For 72 genes, a major transcript began within the upstream protein-coding gene, which confounds measurements
of the upstream gene's expression. 549 transcripts ended at intrinsic (rho-independent) terminators, but most
other transcripts seemed to have variable ends. We found low-level antisense expression of most genes, and the 5’
ends of these transcripts mapped to promoter-like sequences. Because antisense expression was reduced for highly-
expressed genes, we suspect that elongation of non-specific antisense transcripts is suppressed by transcription of
the sense strand.

Conclusions: Annotating the proteins in this GC-rich genome was challenging. Tiling data had higher coverage
than shotgun proteomics and hence led to most of the corrections, but many errors probably remain. Aspects
of the D. vulgaris transcriptome that did not match the classical operon model include transcripts that begin
at the start codon, promoters within protein-coding genes, non-specific 3’ termini, and non-specific antisense
transcription. Our data are available at http://genomics.Ibl.gov/supplemental /DvHtranscripts2011/.




Background

Desulfovibrio vulgaris Hildenborough can obtain en-
ergy by reducing sulfate to sulfide while oxidizing
organic material such as lactate or pyruvate. Such
sulfate-reducing bacteria play a major role in the
global sulfur and carbon cycles and are key drivers
of biocorrosion [1]. Sulfate-reducing bacteria are also
important in the bioremediation of heavy metal ions
such as uranyl, chromate, or zinc, which they can
reduce to insoluble forms [1-3]. D. vulgaris Hilden-
borough (henceforth DvH) has become a model for
studying sulfate-reducing bacteria, as it was the
first sulfate-reducing bacterium sequenced [4] and
has been the subject of many studies of proteomics,
gene expression, and gene regulation (e.g., [5-10];
hundreds of DvH gene expression experiments are
available [11]). We are continuing to analyze the
response of DvH to environmental stresses as part
of ENIGMA — Ecosystems and Networks Integrated
with Genes and Molecular Assemblies — which seeks
to understand how environmental conditions affect
the bioremediation of heavy metals [12].

As DvH is quite distantly related to well-studied
bacteria such as Escherichia coli or Bacillus subtilis,
relatively little is known about gene regulation in
this organism. Tiling arrays and next-generation se-
quencing have been used successfully to map tran-
scripts in other prokaryotes [13], so we undertook to
characterize the transcripts of DvH. This should re-
veal how genes are expressed and should help to infer
their regulation. We used two genome-wide methods
to analyze DvH transcripts: a high-resolution tiling
array with 60-nucleotide probes spaced at 2-4 nu-
cleotides on each strand, which shows the extent of
transcripts, and “5’ RNA-Seq” to identify their pre-
cise 5’ ends [14, 15].

Preliminary analysis of our transcript data sug-
gested that there were many errors in the genome
annotation (the predicted list of proteins encoded
by the genome). Although DvH has been the sub-
ject of many proteomics studies, we are not aware
of any efforts to use proteomics data to correct its
genome annotation. Thus, we combined the tran-
script data with shotgun proteomics data and ho-
mology evidence to revise the genome annotation.

Results

To illustrate our approach, Figure 1 shows the tiling
data and the 5" RNA-Seq data for a six-kilobase

region of the genome, along with revisions to the
genome annotation. We will first discuss the relia-
bility of our data and the identification of transcript
starts and ends, and then discuss our changes to the
genome annotation and some biological implications.

Reliability of tiling data

We obtained tiling data for mRNA from cells grown
with lactate as the carbon source and sulfate as the
electron acceptor. We used both a defined minimal
medium (LS4D) and a rich medium supplemented
with yeast extract (LS4). We also hybridized an
array to genomic DNA to measure the strength of
each probe. We used this genomic control and the
nucleotide content of the probes to normalize the
tiling data and to estimate the log, level of expres-
sion at each probe. Log levels for rich and minimal
media were quite similar, with a linear correlation of
0.93 across 2.004 million probes.

Probes for the coding regions of genes usually
had higher raw intensity than antisense probes for
the opposite strand (Figure 2A). To quantify the dif-
ference between the two distributions, we used the
Kolmogorov-Smirnov D statistic, a non-parametric
measure which ranges from 0 if two distributions are
identical to 1 if they do not overlap. The D statis-
tic improved upon normalization: for rich media it
improved from 0.72 to 0.74. The overlap between
the distributions is primarily due to poorly expressed
genes rather than noise in individual probe measure-
ments. For example, if we use only the most highly-
expressed two-thirds of genes, then D improves to
0.95 for rich media. The poorly-expressed genes can
be seen in the left shoulder of the coding distribution
(Figure 2B) and the left of Figure 2C. Hundreds of
genes have little expression or are expressed primar-
ily on the antisense (non-coding) strand, but genes
that are expected to be essential are well expressed.
As discussed below, the annotation of many of the
poorly-expressed regions as proteins seems question-
able.

Figure 2A also shows that most antisense probes
were expressed above control probes that did not
match the genome sequence. This might reflect non-
specific transcription across the genome, as has been
reported in Escherichia coli [16,17]. We will dis-
cuss non-specific transcription in more detail below.
The presence of non-specific transcripts complicates
the determination of a region as “expressed” or not.
However, if we assume that the entire genome is



transcribed at physiologically relevant levels on one
strand or the other, then the median across both
strands is the boundary between expressed and not.
As our tiling data is normalized to a median of zero,
we will use zero as the threshold for expressed (sim-
ilar to [18]).

Transcript ends

If a transcript has a specific end, then the log level
should drop sharply. To quantify whether or not
there was a sharp drop at a given location, we asked
whether the log levels around that point were corre-
lated with a step function, that is, a sequence of high
values before the drop followed by a sequence of low
values after the drop [19]. We defined a sharp drop
as having a “local correlation” of at least 0.8 and at
least a two-fold drop in expression level. We identi-
fied 771 sharp drops in tiling data from rich media
and 483 sharp drops in tiling data from minimal me-
dia. For comparison, based on our updated operon
predictions (see below), we estimate that DvH has
about 1,200 transcript ends.

When we compared these drops to predictions
for intrinsic (rho-independent) terminators from
TransTermHP [20], we found that the majority of
sharp drops were located at intrinsic terminators
(61% in rich media and 75% in minimal media). As
shown in Figure 2D, the drop tends to be at about
—30 relative to the end of the terminator’s stem-
loop. Because the probes are 60 nucleotides long,
this implies that the drop usually occurs around a
probe which ends near the termination site. Over-
all, we confirmed 771 of 2,978 predicted terminators
(Additional file 1), but the predicted terminators of-
ten overlap. If we combine the overlapping predic-
tions, then we confirmed 549 distinct terminators.

There were just 25 sharp drops that were found
in both rich and minimal media but were not pre-
dicted by TransTermHP. We examined these man-
ually and removed three questionable ones, leav-
ing 22 unexplained terminators. There was a ter-
minator prediction on the other strand for 13 of
these. These included 5 terminators with uncertain
strandedness (TransTermHP’s “opp_overlap” flag),
and most of the other 8 terminators had a plausi-
ble T-rich stretch. So, we believe that most of these
13 terminators that were predicted on the “wrong”
strand are bidirectional. To understand the termina-
tion of the remaining transcripts, which lack sharp
drops, we examined a random sample of 10 genes

out of 342 that are well expressed in both conditions
(median log level of 1 or higher), are expected to
be at the end of their operon (based on revised pre-
dictions below), and lacked confirmed terminators.
For 6 of these 10 genes, transcription downstream of
the gene dropped gradually, without any specific end
being apparent; the remaining cases included 3 puta-
tive intrinsic terminators with weak drops that were
below our thresholds and just one unexplained sharp
drop. Overall, virtually all of the specific transcript
ends are accounted for by intrinsic terminators, but a
significant fraction of transcripts have heterogeneous
3’ ends.

The other major mechanism for terminating
transcription in bacteria involves the rho protein (re-
viewed by [21]). Although rho is not well under-
stood, it could account for the heterogeneous ends,
and it is estimated to account for about 20% of
termination in E. coli [22]. However, we suspect
that rho activity is weaker in DvH than in E. coli.
First, we observed an operon which contains the an-
tisense strand of an entire protein-coding gene (gidB,
DVU1250; see Supplementary Figure 1). Similar
cases of operons extending through antisense of an
entire gene have been observed in B. subtilis, which
has weak rho activity, but not, as far as we know,
in E. coli [23]. Second, a transposon mutagenesis
project in Desulfovibrio alaskensis G20 (formerly D.
desulfuricans G20) found several insertions in rho,
which suggests that rho is not required for growth
in Desulfovibrios (Arkin lab, unpublished data). In
contrast, rho is essential in E. coli [24,25]. Finally,
large numbers of transcripts with heterogeneous 3’
ends have been reported in the archaeon Halobac-
terium salinarium [26] but not, as far as we know,
in other bacteria. Thus, we wonder if DvH has an-
other mechanism for non-specific termination. Fur-
ther study of whether rho can be knocked out in
DvH and what effect this has will clarify this.

Inferring transcript starts from 5° RNA-Seq and
tiling data

We extracted mRNA from cells grown in minimal
LS4D media and used 5> RNA-Seq to map the 5’ ends
of the RNAs [14,15]. We constructed and sequenced
two libraries; for one library we used an exonuclease
treatment which was intended to remove degrada-
tion products. However the two libraries gave simi-
lar results (the Spearman correlation of their counts
was 0.67) and manual examination suggested that



the exonuclease treatment had little effect. We ana-
lyzed these libraries together and counted the total
number of reads that were uniquely mapped to each
location in the genome.

As shown in Figure 1, the number of 5" RNA-Seq
reads shows steep peaks (note log scale). Sometimes
we see a large number of reads at one position, and
a much smaller number of reads at locations within
1-2 nucleotides; these could reflect variation in initi-
ation of transcription from the “same” promoter, or
they might arise from minor errors in mapping the
5" ends of the transcripts. In any case, each local
peak corresponds to a potential transcription start.
Some of these peaks may reflect degradation prod-
ucts rather than genuine transcription starts, but
peaks in 5" RNA-Seq that correspond to sharp rises
in the tiling data should be genuine transcription
starts. Just 2.2% of 5> RNA-Seq peaks with 20-500
reads lie within 30 nucleotides of a sharp rise, while
32% of peaks with over 500 reads do. (We defined
a sharp rise as having a local correlation of 0.8 or
above in tiling data from rich media.) Most of the
peaks with many reads but no corresponding rise in
the tiling data lie within highly expressed regions
and probably reflect degradation products. In some
cases, there are multiple 5" RNA-Seq peaks near each
other and the tiling data shows a more complicated
or gradual rise, which might reflect multiple start
sites, but we cannot rule out that these are degra-
dation products.

We combined our 5° RNA-Seq data with the
sharp rises in rich media to obtain a preliminary
set of 1,618 transcription starts that were likely to
be genuine. (For comparison, based on the revised
operon predictions below, there should be around
1,900 transcript starts in DvH.) We searched up-
stream of these starts for promoter motifs. As shown
in Figure 3, we were able to reconstruct the motifs
for 07, rpoN (also known as o°%), and fliA (also
known as ¢28). Furthermore, we found a 0" site at
two thirds of these locations, which is the same rate
as in a compilation of transcript starts in E. coli [27].
Thus the transcript starts that we identified arise
primarily from the initiation of transcription and not
from RNA degradation. The DvH genome contains
one other sigma factor, rpoH, but we were unable
to detect this motif, nor did we detect transcrip-
tion starts at predicted rpoH-dependent promoters
[28,29], so we suspect that rpoH does not have sig-
nificant activity under our growth conditions.

To predict which of the 5 RNA-Seq peaks cor-

respond to genuine transcription starts, we used a
machine learning approach that took into account
the number of reads, the correspondence with tiling
data, and the presence of a promoter-like sequence.
Because we do not have any known promoters to
train our predictor with, we used high- and low-
confidence subsets of the data, according to the other
features, to train a model for each feature. We then
combined the models into a naive Bayesian classi-
fier. The classifier selected 1,124 of the 13,822 peaks
as high-confidence transcription starts having a log-
odds of 4 or higher (e* ~ 55; Additional file 2). If
we randomize the data then the same model predicts
just 31 promoters, so we estimate that 31/1,124 =
3% of these transcription starts are false positives.

When we compare the locations of these high-
confidence transcription starts in the 5° RNA-Seq
data and the tiling data, the 5° RNA-Seq peak tends
to be at +20 relative to the center of the rise in the
tiling data (Figure 2E). The central tendency con-
firms that most of the transcription starts are gen-
uine. If 60 nucleotides of hybridization were required
for strong signal, then we would expect a overlap of
430, so the location at 420 suggests that hybridiza-
tion of 50 out of 60 nt suffices for signal.

Revising gene models

The tiling data suggested that there were number-
ous errors in the genome annotation, as 246 puta-
tive proteins from the original annotation were ex-
pressed on the wrong strand and lacked homology
to other proteins (e.g., DVU1640 and DVU1642 in
Figure 1). Furthermore, we sometimes found open
reading frames with homology support on the ex-
pressed strand (e.g., the DUF497 genes in Figure
1). We found other suspicious patterns in the tiling
data as well, such as strong terminators within puta-
tive genes, genes that were expressed only near their
3’ ends, and genes whose transcripts began down-
stream of their annotated start codons (Figure 4).
Together, these results showed that we needed to
reconsider the genome annotation.

To complement the transcript data, we used pep-
tide spectra for DvH from shotgun proteomics ef-
forts within the ENIGMA project (Additional files
3 and 4). We reanalyzed this data using the trans-
lation of the genome in all six reading frames, with-
out relying on the genome annotation. To maximize
coverage, we considered proteins as detected if they
had a single high-confidence peptide; to prevent this



from leading to errors in the annotation, we visu-
ally inspected the spectra if a proposed change was
based on a single peptide (Additional file 5). As
shown in Figure 2F, most genes from known fami-
lies are detected in the tiling data, and a majority
of genes from known families were also detected by
proteomics. The other genes, which are harder to
annotate, were much more likely to be detected by
tiling than by proteomics, probably because these
proteins tend to be less highly expressed and shorter,
which reduces the number of peptides that could be
detected. To estimate the rate of false positive iden-
tification, we used proteins from the original anno-
tation that were unlikely to be genuine. Specifically,
we used proteins that were expressed at least two
times higher on the antisense than the sense strand
and lacked homology support. Of these 106 pro-
teins, just five were detected, each with one peptide.
Manual examination of the spectra suggested that
these were false positives (H. L. and A. M. Redding-
Johanson, personal communication; these are the re-
moved “proteins” that were detected by proteomics
in Figure 2F). Thus, the proteomics data confirmed
that these “proteins” should be removed, and our
automated protein identification had a false positive
rate of around 5%.

We also re-examined the annotation of the
genome by homology, as additional genomes from
the (rather broad) genus of Desulfovibrio have been
sequenced since the original annotation, and there
have also been improvements to the gene family
databases. We used two automated gene finders that
consider homology information (CRITICA [30] and
RAST [31]) as well as several types of BLAST.

While examining the transcript data for sus-
picious patterns, we used the following rules for
how genes should be expressed. First, the coding
strand should be expressed more highly than the
non-coding strand. Second, the transcript should
start at or before the start codon. If moving the
start codon would lead to a very short gene, the gene
was removed. Third, the transcript should end after
the stop codon. Finally, we ignored genes not tran-
scribed on either strand, as these could be expressed
under some other condition. Similarly, we cannot
rule out that a transcript satisfying these rules would
have been seen under some other growth condition,
so genes with clear homology or proteomics support
were retained despite violating these rules.

Overall, we made 505 corrections to the genome
annotation (Additional file 6). We removed 255 pu-

tative proteins, including 154 that were expressed
primarily on the wrong strand, 44 that were only
expressed (in the tiling data) for a small 3’-terminal
portion, and 31 with internal terminators. The re-
maining 26 proteins were removed because we iden-
tified strongly overlapping ORFs with homology or
proteomics support in another frame. As shown in
Figure 5A, most of the removed proteins were rela-
tively short, with a median length of 54 amino acids,
but we removed 43 putative proteins of 100 or more
amino acids. We added 128 proteins, including 62
that were identified by both CRITICA and RAST.
32 of the new proteins have informative annotations;
the remainder are hypothetical proteins. 13 of the
new proteins were identified by neither gene call-
ing program or were originally annotated as pseudo-
genes: 4 of these were were detected by proteomics
and their spectra were validated by inspection (H.
L. and A. M. Redding-Johanson, personal commu-
nication) and the other 9 had strong homology sup-
port. Finally, we changed 123 start codons. We
moved 35 of them upstream, mostly due to pro-
teomics (for proteins with a single upstream peptide,
we inspected the spectra to verify the change). A few
start codons were moved well upstream after exam-
ining genes with long gaps between the transcript
start and the start codon and checking for conser-
vation of the intervening sequence. We moved 88
start codons downstream, usually because the gene’s
transcript started downstream of the original start
codon. As shown in Figure 5B, many of the changes
to the start codon were quite large, with a median
absolute difference of 37 amino acids. Overall, 80%
of proteins in our revised annotation were covered
from start codon to stop codon by transcripts in the
tiling data, and 54% of proteins were detected in the
proteomics data.

We were surprised at extent of these corrections
and the lack of agreement between the two auto-
mated tools. CRITICA missed 12% of genes in our
revised annotation and RAST missed 7% of genes
in our revised annotation. Among genes predicted
by both tools, the start codon differed 32% of the
time. Conversely, 0.9% of CRITICA calls and 5.6%
of RAST calls were not included in our revised an-
notation and are likely to be false positives. As we
were rarely able to correct start codons that were too
far downstream, we expect that many of the start
codons in our revised annotation are still erroneous.
An accurate annotation will require proteomics with
higher coverage or targeted to N-terminal peptides



[32).

Leaders and untranslated transcribed regions

We identified 5" and 3’ untranslated transcribed re-
gions (UTRs) by checking whether the entire re-
gion between a transcript’s boundary and the near-
est gene was expressed. As discussed above, many
transcripts show non-specific ends, which makes it
problematic to define the 3" UTR, so we only ana-
lyzed the 3’ UTRs for transcripts with intrinsic ter-
minators. We defined 983 5° UTRs and 494 3° UTRs
(Additional file 6).

One surprise was the presence of “leaderless” pro-
moters where the transcript begins at the first nu-
cleotide of the start codon. Leaderless transcripts
were first identified in archaea, but they have been
identified in various bacteria in genome-wide studies,
including in Geobacter sulfurreducens PCA, which
like DvH is a d-Proteobacterium [33]. However,
given the high rate of error in start codon anno-
tations, we wondered if the leaderless promoters in
DvH were genuine. We checked the start codons
for candidate leaderless promoters from a prelimi-
nary version of our analysis by asking whether ho-
mology extended to the very N-terminal end of the
annotation. 43 of 49 of our preliminary candidates
were confirmed by BLASTp and 21 of these were fur-
ther confirmed by alignments to known families. The
remaining 6 N-terminal regions were not conserved
and might be erroneous, but most of the leaderless
promoters must be genuine. Our final analysis gave
54 proteins with leaderless promoters out of 954 pro-
teins that are at the beginning of transcripts with
clearly defined starts.

As shown in Figure 6A, the median length of
the 5> UTR is 55 nucleotides, but some genes have
very long 5" UTRs. Two operons that are central
to sulfate reduction have particularly long 5° UTRs:
dsrABD, which encodes three subunits of the dis-
similatory sulfite reductase, has a 5° UTR of 289
nucleotides, and apsB, which encodes a subunit of
adenylylsulfate reductase, has a 5 UTR of 208 nu-
cleotides. However, in general, we could not find a
clear pattern for which types of genes had long 5’
UTRs. Among 5 UTRs of over 100 nucleotides for
genes on the main chromosome, about half (106,/208)
had some conservation in another strain, D. vulgaris
Miyazaki B, according to a genome alignment [34].
(The Miyazaki B strain is sufficiently diverged from
DvH that there should be no neutral conservation

of non-functional DNA.) This suggests that many of
these 5’ UTRs contain functional elements; however
we cannot be certain that these function as RNA
elements rather than as alternative promoters.

For the 494 genes with a confirmed terminator
downstream, the median length of the 3° UTR was 68
nucleotides (Figure 6B). Of 147 3° UTRs of over 100
nt, just 16 contained segments that were conserved
in D. vulgaris Miyazaki B; thus, we predict that few
of these 3’ UTRs contain functional sequences.

Finally, we found little evidence of transcribed re-
gions that are not associated with annotated genes.
We found just 26 unannotated transcribed regions
with high-confidence promoters, and after removing
antisense transcripts this dropped to just 4. How-
ever, both our experimental protocols and our anal-
ysis methods are probably biased against RNAs of
under 100 nucleotides, so this does not imply that
DvH lacks small RNAs.

Revising operon structures
Before we began this project, we had predicted oper-
ons from the distances between genes on the chro-
mosome, how conserved the proximity of the genes
was, whether the genes had similar expression pat-
terns across a large collection of microarray experi-
ments, and whether they were likely to have related
functions [11,35]. Here, we use the transcript data
to update the operon predictions. We classifed each
adjacent pair of genes on the same strand as a simple
operon pair, as a complex operon pair with an inter-
nal operon or internal attenuator, or a non-operon
pair. (Examples of operons with internal attenuators
or internal promoters are shown in Supplementary
Figure 2.) We began with our original predictions
(which predict whether pairs are ever cotranscribed
or not) and reclassified pairs with clear signals in
our data. Ambiguous cases occurred if there was
a weak drop and then a high-confidence transcrip-
tion start just downstream of the drop — this could
be a genuine terminator followed by a promoter, but
the tiling data lacks the resolution to distinguish the
drop clearly, or it could be noise in the tiling data.
Relative to our original predictions, which had
1,558 operon pairs and 838 non-operon pairs, we
reclassified 188 non-operon pairs as simple oper-
ons; we reclassified 14 operon pairs as non-operons;
we identified 169 complex operon pairs with inter-
nal promoters, about half of which were originally
classified as operons; and we identified 17 complex



operon pairs with internal attenuators, 12 of which
were originally classified as operons (Additional file
7). We were surprised at the number of pairs that
were reclassified from non-operons to simple oper-
ons. These tended to be widely spaced (median
separation of 108 nucleotides) and moderately coex-
pressed (median Pearson correlation of 0.19), which
explains why the were classified as non-operon pairs
in our original predictions. The wide spacing and
the moderate coexpression also suggested that these
might contain internal promoters that were missed
by our automated analysis. However, only 30 of
these 188 pairs had potential internal transcript
starts according to our classifier (log odds values of 0
to 4). Manual examination of 10 randomly selected
cases found potential internal promoters for just two
out of the ten. The weak coexpression could be due
to internal promoters that are not active under our
growth conditions or due to noise in the expression
compendium. Comparison of tiling data from a wide
range of growth conditions [26] would be one way to
distinguish these alternatives.

As shown in Figure 7, genes that are co-
transcribed but also have an intergenic promoter
between them show little coexpression. We suspect
that this is because we can only identify internal pro-
moters with high confidence if they are stronger than
the upstream promoter, so that the upstream gene
is transcribed only from the upstream promoter and
the downstream gene is transcribed primarily from
the intergenic promoter. If there is an internal pro-
moter that is within the upstream gene, however,
we see a much stronger coexpression (P < 1074
Wilcoxon rank-sum test). Because the expression
data was collected with 1-2 probes per gene and thus
lacks spatial resolution, we suspect that this coex-
pression is an artefact — the probe for the upstream
gene hybridizes to the internal transcript, which does
not include the upstream gene’s start codon and can-
not lead to its expression. Thus, the gene expression
data for the upstream gene is misleading. Knowledge
of transcript structures will allow for better design
of gene expression arrays.

Non-specific transcription and termination

As mentioned above, the tiling data suggested that
there is weak and potentially non-specific expression
of the antisense strand of most genes. To confirm
this pattern, we examined the 5° RNA-Seq data. Be-
cause we were interested in non-specific effects, we

used all local peaks in the data, rather than only
the stronger peaks considered while analyzing tran-
script starts. 1.4% of the mapped reads began within
coding regions on the antisense strand of genes in
our updated annotation. (For comparison, 33% of
the reads corresponded to high-confidence promot-
ers and 15% of reads began within coding regions
on the sense strand.) Only 46 of these 3,983 anti-
sense starts were classified as high-confidence starts
by our statistical model. To verify that the weak
antisense transcript starts are genuine, we asked if
they were located at promoter-like signals (similar
to [17]). The antisense starts were quite enriched in
weak promoter signals; for example, 35% of the an-
tisense locations, but only 12% of randomized loca-
tions, had 4 bits or more of similarity to a promoter
motif (P < 107!%, Fisher exact test). In contrast,
starts within coding regions had little enrichment in
promoter signals, which suggests that most of them
are degradation products.

As shown in Figure 2C, antisense expression
tends to be less for genes that are more highly ex-
pressed on the sense strand. If we average across
the two growth conditions, the correlation is —0.40
(P < 1071%; using the rank correlation gave simi-
lar results). If we consider only genes that are ex-
pected to be essential, then the correlation is —0.60
(P < 10715), which shows that the effect is not due
to misannotated genes or to genes that are not ex-
pressed at all.

In most prokaryotes, promoter-like sequences
within genes are selected against and occur a bit
less frequently than expected by chance [36]. We
wondered how promoter-like sequences might re-
late to our evidence for non-specific transcription.
To avoid artefacts due to annotation errors or the
edges of genes, we considered only longer genes (300
nucleotides or longer) that belong to known fami-
lies. We found that highly-expressed genes contained
fewer internal promoter-like sequences (> 4 bits) per
kilobase on the sense strand (Spearman p = —0.23,
P < 10715). However, expression level had little ef-
fect on the rate of promoter-like sequences on the
antisense strand (p = —0.04, P = 0.06). Because
the rate of promoter-like sequences on either strand
is strongly correlated with GC content (p = 0.80
for the sense strand and p = 0.67 for the antisense
strand), we also tested the relationship using par-
tial correlations. The effect of expression levels on
sense-strand promoter motifs remains after control-
ling for GC content (partial p = —0.09, P < 1075).



Consistent with the sequence analysis, the rate of an-
tisense transcript starts (in reads per kilobase) was
not significantly reduced for highly expressed genes
(p=-0.02, P> 0.2).

We propose that promoter-like sequences on the
sense strand are selected against to prevent expres-
sion of truncated proteins, while transcription on the
antisense strand is suppressed by transcription on
the sense strand. Because we see antisense suppres-
sion in the tiling data but not in the 5 RNA-Seq
data, it appears that elongation, rather than initi-
ation, is suppressed. Although a promoter on one
strand can suppress transcription intiation from the
opposite strand, this seems to rely on a specific site
where the RNA polymerase pauses [37] and would
not occur in most situations. We do not know what
suppresses the elongation of antisense transcripts for
highly expressed genes. One possibility is that elon-
gation of antisense transcripts is suppressed because
the RNA polymerase backtracks when it collides
with RNA polymerase on the sense strand [38]. Such
collisions would occur more frequently for highly-
expressed genes, and the RNA polymerase on the
sense strand might “win” these collisions because
translating ribosomes follow closely behind the RNA
polymerase on the sense strand and prevent the
RNA polymerase from backtracking [39].

Discussion
Evidence-based annotation of proteins

We identified far more changes to the protein anno-
tation (505) than we had expected from transcrip-
tomics efforts in other bacteria. We have also col-
lected transcript data for Desulfovibrio alaskensis
G20 and have found a similar number of errors in
the original annotation there as well (Arkin lab un-
published data). For comparison, the annotation
of Geobacter sulfurreducens PCA was updated re-
cently using transcript data and shotgun proteomics,
which resulted in only 144 changes [33]. Desulfouib-
rio genomes are GC-rich, which increases the num-
ber of spurious long reading frames, and there are
relatively few genome sequences for Desulfovibrios,
which makes comparative gene-finding tools such as
CRITICA less effective, but both of these challenges
apply to G. sulfurreducens as well. Our prelimi-
nary analysis suggests that many plausible correc-
tions to the G. sulfurreducens annotation remain:
we found 39 protein-coding genes in the updated

annotation that lack homology support, were not
in the proteomics data, and were only expressed on
the “wrong” strand. Nine of these “genes” mask
unannotated proteins with homology support on the
opposite strand. As the tiling and RNA-Seq experi-
ments described in this paper cost less than sequenc-
ing a genome did a few years ago, transcriptomics
could be used broadly to improve genome annota-
tion.

We were also surprised at the number of changes
we made based on the tiling data that, in retrospect,
could have been made by homology alone. There
were 24 proteins that we removed because they
lacked homology support and a conflicting frame
had homology support, and there were 10 proteins
with homology support that were missed in the orig-
inal annotation and by both RAST and CRITICA.
Neither RAST nor CRITICA uses the full range of
approaches to detecting protein homology: RAST
relies primarily on pairwise protein comparisons to
representatives of known families and CRITICA re-
lies on nucleotide BLAST hits. We found addi-
tional proteins by comparing sequences to families
with PSI-BLAST [40] or HMMer [41], which can find
highly diverged members of known families, and also
by comparing to hypothetical proteins that were an-
notated in other organisms. Faster tools (e.g., HM-
Mer 3 [41] or FastBLAST [42]) should allow for more
exhaustive searches and hence more accurate auto-
mated annotation.

Our large-scale revisions to the DvH annotation
will change the results of many computational anal-
yses and will also affect the design of experiments.
For example, changes to the predicted start codons
will also affect attempts to clone a gene or tag a pro-
tein. We also identified a technical challenge with in-
terpreting gene expression patterns when there are
promoters within genes, which will affect the design
of gene expression microarrays.

Tiling array design

We used very high-resolution microarrays, with
probes every 2-4 nucleotides. We had hoped that
such a high density would let us place promoters
and terminators very accurately, but that turned
out not to work: the resolution of promoters from
tiling alone was just 20 nucleotides or so. This is
probably because of non-full-length hybridization to
60-mer probes. The high density of the arrays is still
beneficial, as nearby probes are a form of replicates.



Still, it would be more cost-effective to use arrays
with probes every 6-10 nucleotides and to combine
results from more conditions.

Transcript structures

We hope that our revisions to operon structures,
along with the 1,124 transcript starts that we identi-
fied at nucleotide resolution, will aid the elucidation
of gene regulation in DvH. They have already led to
revisions in the regulons of the sigma factors rpoN
and fliA [43]. As regulatory sequences tend to be
near the promoter, promoter locations should aid
in the identification of transcription factor binding
sites more broadly. In particular, we have used the
transcript starts to help us interpret data on where
transcription factors bind in the genome (L. Rajeev
and A. Mukhopadhyay, unpublished data).

Conclusions

We combined tiling microarrays, 5° RNA-Seq, and
proteomics to reannotate the genes and transcripts
of D. wulgaris Hildenborough. We corrected hun-
dreds of errors in the genome annotation but many
more errors probably remain, particularly in the
identification of start codons. Although our 5’ RNA-
Seq protocols returned a mixture of true transcript
starts and likely degradation products, we were able
to identify 1,124 genuine transcription starts at a
false positive rate of a few percent by combining
the reads with tiling data and sequence analysis.
We found that DvH ¢7° prefers a different motif
than its E. coli counterpart and that many tran-
scripts have non-specific 3’ ends. Finally, we found
non-specific transcription of the antisense strands of
protein-coding genes in both the tiling and the 5’
RNA-Seq data; elongation of these non-specific an-
tisense transcripts seems to suppressed by transcrip-
tion of the sense strand. All of our results, including
raw data, processed results, modifications to the an-
notation, and source code, are available from our
web site [44]; the data is also available at the Gene
Expression Omnibus (GSE29560).

Materials and methods
Strains and growth conditions

Experiments were conducted within a Coy anaero-
bic chamber with an atmosphere of about 2% H,

and 5% COg, with the remainder being No. Desul-
fouvibrio vulgaris Hildenborough was inoculated from
a 1% glycerol stock and grown in glass bottles with
lactate-sulfate media at 30°C. Cells were collected
at an optical density of around 0.3. Tiling data was
collected from cells grown in two conditions: defined
LS4D medium [8] and LS4, which is LS4D supple-
mented with 0.1% w/v yeast extract. 5" RNA-Seq
data was collected from defined LS4D medium.

RNA collection

Bacterial pellets were collected by centrifuging cul-
tures for 10 minutes at 10,000 g at 4°C in RN Ase free
50ml polypropylene tubes. Supernatant was imme-
diately poured off and pellets were stored at —80°C.
After thawing, RNA was extracted with RNeasy
miniprep columns (Qiagen) with the optional on-
column DNase treatment. RNA quality was con-
firmed with an Agilent Bioanalyzer; only samples
with an RNA integrity number of around 9 or bet-
ter were used. Ribosomal RNA was depleted with
the MICROBExpress kit (Ambion), which uses mag-
netic beads coated with oligonucleotides that hy-
bridize to ribosomal RNA. These mRNA-enriched
samples were analyzed with tiling arrays or 5 RNA-
Seq.

Tiling experiments

First-strand ¢cDNA was synthesized with random
hexamer primers using SuperScript indirect cDNA
labeling system (Invitrogen); the reaction buffer was
supplemented with actinomycin D to inhibit second-
strand synthesis [45]. First-strand ¢cDNA was la-
beled with Alexa 555. About 2 ug of labeled first-
strand cDNA was hybridized to the Nimblegen array.
For the genomic control, we used DNA from cells
in stationary phase to minimize copy number vari-
ation across the chromosome. Genomic DNA was
extracted using the DNeasy blood tissue kit (Qia~
gen) and labeled with Nimblegen’s comparative ge-
nomic hybridization protocol. Briefly, genomic DNA
was sonicated to 200-1000 bp and amplified using
Klenow fragment and Cy3-labeled random nonamer
primers. Nimblegen slides were scanned on an Axon
Gene Pix 4200A scanner with 100% gain and ana-
lyzed with Nimblescan, with no local alignment and
a border value of —1. For rich media, we used the
average of log intensities from two independent ex-
periments, while for minimal media and the genomic



control we did just one experiment.

To remove probes that might cross-hybridize, we
mapped the probes to the genome (NC_002937 and
NC_005863) with BLAT [46] and we ignored any
probes whose second-best hit matched at 50 or more
nucleotides. We computed normalized log levels by
using the genomic control and by using each probe’s
nucleotide content, followed by setting the median
value to zero. First, we used a linear regression to
model the log, intensity as a function of the log in-
tensity in the genomic control and the probe’s nu-
cleotide content. To compute this model, we used
only probes within the sense strands of genes because
of differences in nucleotide composition between cod-
ing and non-coding regions and even between the
coding and antisense strands of genes. The predic-
tion of this model is the expected bias of the probe,
so we subtracted this from the (raw) log intensity.
We also removed the data for the 1% of probes with
the lowest intensities in the genomic control, as these
probes gave poor discrimination between coding and
non-coding regions. Finally, we adjusted the normal-
ized values so that their median was 0.

5" RNA-Seq experiments

Given an mRNA-enriched sample, we con-
verted 5’-triphosphate ends to 5’-monophosphate
with Tobacco Acid Pyrophophatase, we blocked
the 3’ ends with sodium periodate, and we
added a sequencing adaptor (5-ACACUCUUUC-
CCUACACGACGCUCUUCCGAUCU-3’) onto the
5 end with Ambion T4 RNA ligase [15]. We
used random hexamer primers with a sequenc-
ing adaptor on their 5 end (5-CAAGCAGAAG-
ACGGCATACGAGCTCTTCCGATCTNNNNNN-
3’) to obtain first-strand ¢cDNA. We size-selected
products of 150-500 bases from an agarose
gel.  We PCR amplified the library to enrich
for products that contained both adaptors and
to complete the 5 adaptor, using primers 5'-
AATGATACGGCGACCACCGAGATCTACACT-
CTTTCCCTACACGACGCTCTTCCGATCT-

3 and 5-CAAGCAGAAGACGGCATACG-
AGCTCTTCCGATCT-3'. We purified the PCR
products and removed unincorporated nucleotides,
primers, and adaptor-only products with AMPure
XP Beads (Agencourt). We also made a second
library in which we used Terminator 5-Phosphate-
Dependent Exonuclease (Epicentre) to try to remove
5-monophosphate (degraded) transcripts and then
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converted 5’-triphosphate ends to 5’-monophosphate
ends with RNA 5’ Polyphosphatase (Epicentre) [14].
Ligation, cDNA and PCR amplification conditions
were similar in both libraries. Between each en-
zymatic reaction of the exonuclease library, RNA
was purified using Agencourt RNAClean XP beads.
Molecules smaller than 100 nucleotides and unli-
gated adaptors were mostly lost in these clean-up
reactions.

For each library, the 32 nucleotides at the 5’ end
were sequenced with a lane of Solexa by the Univer-
sity of California at Davis sequencing center and the
reads were mapped to the genome with Eland. From
the first library, 7.5 million reads mapped uniquely
to the genome; from the second library, 15.5 mil-
lion reads mapped uniquely to the genome. (Reads
from ribosomal RNAs would not map uniquely, as
DvH contains 5-6 nearly identical copies of each ri-
bosomal RNA.) We identified local peaks (within 50
nucleotides) in the combined number of reads in the
libraries. Peaks with at least 10 reads in each library
were considered as potential transcript starts.

Identifying features in the data

We identified rises or drops in each tiling condition
by computing the “local correlation” [19]. We used
the data for 50 probes on either side of a potential
rise or drop and we asked how similar this pattern
was to a step function by measuring the absolute
value of the correlation between this subset of the
data and a series of —1 values followed by an equal
number of 1 values. We measured the local corre-
lation around every probe; to identify the center of
the rise or drop, we used the local maximum of the
local correlation within 21 probes.

To confirm an intrinsic terminator, we required
a sharp drop within 60 nucleotides of the end of the
stem loop that had a local correlation of 0.8 or bet-
ter. We also required a change in the average log
level between either side of the drop of at least 1
(i.e., a two-fold change in intensity).

To identify a break in transcription within a po-
tential operon or between a transcript boundary
and a gene, we smoothed the normalized log level
over five adjacent probes. If the minimum of the
smoothed values was below zero, we identified a
break in the transcript under that condition. To
identify breaks in putative operons, we also required
a difference of at least 1 between the expression level
of the upstream gene and this minimum.



Transcribed regions were defined by smoothing
over 40 adjacent probes (roughly 150 nucleotides)
and requiring a smoothed value of above 0.

Promoter sequence analysis

We began with a preliminary set of 1,618 moderate-
confidence transcription starts, based on a rise in
rich media occuring within 30 nucleotides of a local
peak in the 5> RNA-Seq data. We extracted posi-
tions -40 to +1 relative to these putative promoters
and analyzed only the strand in the orientation of
transcription. We used BioProspector [47] to search
for a bipartite motif with blocks of width 10 and 8
separated by 10 to 18 nucleotides, and kept the best
of 12 runs of its Gibbs sampler. We used MEME [48]
to search for ungapped motifs of 30-35 nucleotides
under the zero-or-one-occurence-per-site model and
found four significant motifs. We used patser [49] to
scan the entire genome for hits to any of the four
MEME motifs and to correct for the high GC con-
tent of the DvH genome. For most analyses we used
only hits of 7 bits or above, which across the four mo-
tifs gave a hit every 111 nucleotides on each strand
of the genome. We associated a motif hit with a 5’
RNA-Seq peak if the peak was within one nucleotide
of the expected location.

Distinguishing transcription starts from RNA
degradation products

We used a semi-supervised machine learning ap-
proach to classify local peaks in the 5 RNA-Seq data
as transcription starts or other. For each local peak,
we computed four features: (1) ngo: the total num-
ber of 5 RNA-Seq reads mapped to starting at that
location; (2) 7p;cn: whether the 5 RNA-Seq peak
was associated with a transcribed region and with a
rise in the rich media tiling data with a local cor-
relation of 0.6 or above, and if so, what the local
correlation was; (3) 7ynin: the corresponding value
for minimal media tiling data, but with a thresh-
old of 0.7 and without consideration of whether it
was associated with a transcribed region; and (4)
b, the bit score of the best hit to any of the four
MEME promoter motifs that occurred within 1 nu-
cleotide of the putative transcription start, if any
(weak hits of under 7 bits were ignored). For each
feature, we inferred a model (a log-odds score for
any given value) by comparing the distribution of
the feature for transcription starts that were high-
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or low-confidence according to the other features.
Specifically, we inferred a model for r,;.;, by com-
paring starts with both a 7,,:, and b value to starts
with neither. We inferred a model for r,,;, in the
analogous way. We inferred a model for b by compar-
ing starts with both r,;.n, and 7,,;, values to starts
with neither. Finally, we inferred a model for ns,; by
comparing starts with a total log odds score, from
the other features, of above 4, to starts with a log
odds score of under —4. (e* ~ 55 so these are about
55 times more likely to be genuine or false starts.)

Models were inferred using binned subsets of the
data, pseudocounts, and smoothing [35]. The R code
for this step is available in the MicrobesOnline code
base, see BinnedBinaryFit2() and BBFPredict() in
util/utils.R [50]. We summed the log odds for each
feature to get a final log odds score. This corre-
sponds to assuming that the features are indepen-
dently distributed amongst the false positives and
amongst the true transcription starts, as in a naive
Baysian classifier. Values above zero indicate that
the transcription start resembles the high confidence
transcription starts, and the magnitude of the log
odds indicates the level of confidence. We consid-
ered starts above a log odds of 4 to be high confi-
dence starts. The distributions of the features for
the high-confidence starts and the other starts are
shown in Supplementary Figure 3. To estimate the
false positive rate, we used a randomized data set:
we replaced the locations of all 5> RNA-Seqs peaks
with random locations, we recomputed all features,
we shuffled the resulting values to eliminate the (bi-
ological) agreement between them, and we applied
the model.

Shotgun proteomics

Mass spectra were collected for peptides derived
from a variety of protein fractions from the
ENIGMA project. We also used spectra from
previously-published whole-cell proteomics experi-
ments with DvH grown under several stress condi-
tions [9,10,51]. All spectra were analyzed against
the six-frame translation of the genome. For protein
fractions, spectra were analyzed with the Paragon al-
gorithm in ProteinPilot 3.0 [52], and peptides were
considered confidently identified at a posterior prob-
ability of 0.95, resulting in 22,503 different peptides
for 1,866 reading frames. For complete-proteome
experiments, reading frames were considered con-

fidently identified if they had a MASCOT score



of 32 or greater, resulting in 1,556 reading frames
detected. If a change to the annotation derived
from a single peptide, then the relevant spectra were
checked by hand.

Correcting gene annotations

Candidate proteins to change or remove were se-
lected based on the tiling data, the transcript starts,
and the rules discussed above, and were checked
manually. Data was viewed in Artemis [53]. Ho-
mology evidence for a protein was examined using
the domains and homologs tools on the MicrobesOn-
line web site [11]: these show HMMer 3 [41] or
PSI-BLAST [40] hits to known families and Fast-
BLAST [42] hits to other proteins.

Potentially missed proteins were identified by ex-
amining proteomics data, by using CRITICA and
RAST, by using PSI-BLAST to search for homology
to conserved domains [54] in the six-frame trans-
lation of the genome, by using blastx [55] to com-
pare the six-frame translation of unannotated tran-
scribed regions to annotated proteins in other organ-
isms, and by checking candidate open reading frames
with MicrobesOnline’s sequence search and with the
PFam web site [56].

After initial changes to the annotation, we ex-
amined genes with significant overlaps. In partic-
ular, if a gene with homology or experimental sup-
port overlapped a gene without support, we removed
the unsupported protein. Conversely, a few proteins
with odd patterns in the tiling data were retained be-
cause they had strong homology or proteomics sup-
port (using the proteomics data discussed above and
also data from [7]).

We began our analysis with an older RefSeq an-
notation (from 2007) and all of the changes discussed
above are relative to this annotation. As of De-
cember 2010, the RefSeq annotation had changed,
presumably based on comparative genomic analyses.
On the main chromosome, RefSeq had removed 41
of the 255 ORFs that we removed, along with re-
moving one other ORF that is masked by RefSeq’s
change to a start codon. RefSeq had added 28 of the
127 ORFs that we added, along with 1 more ORF
that seems questionable to us. Finally, RefSeq had
changed 68 start codons, which includes 26 changes
in the same direction as our changes, 1 change in the
opposite direction, and 41 changes to genes that we
did not modify. Of those 41 changes, 22 agree with
both CRITICA and RAST or agree with at least
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one of the two and have some homology support; we
lack confidence in the other 19 but they are consis-
tent with our transcriptome data and could be cor-
rect. Overall, there was moderate overlap between
our changes and the RefSeq changes, which illus-
trates the difficulty of annotating proteins in DvH.
An update to the DvH annotation that includes the
changes from RefSeq that we accept is available from
our web site [44].

Revising operon structures

We classified adjacent pairs of genes on the same
strand based on whether there was a high-confidence
“internal” transcript start (that is, between the
upstream gene’s start codon and the downstream
gene’s start codon) and whether there was a break in
expression between the genes. Simple operon pairs
had neither an internal transcript start nor a 2-fold
drop in expression in the intergenic region. Non-
operon pairs had a drop by at least two-fold to be-
low a log-level of 0 or had both an internal tran-
script start and a confirmed terminator. However,
we classified pairs as having attenuators if they had
a confirmed terminator but a log level of at least 0.25
throughout their intergenic region. If a pair had an
internal promoter and no drop then it was classified
as a complex operon pair. The various thresholds
were validated by manually examining the results.

Statistics

All statistical tests and regressions were conducted
in R [57].
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We show the tiling and 5° RNA-Seq data for 1719 to 1725 kilobases on the main chromosome, along
with gene annotations, transcript starts, and terminators. The top two panels show normalized logs-levels
from tiling data, with each probe plotted at its center. The genome-wide median value of 0 is shown as a
horizontal black line, and vertical grey lines highlight the locations of key features from other panels, namely
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high-confidence starts and confirmed terminators. The third panel shows the number of reads starting at
each location across two 5> RNA-Seq libraries from minimal media; note the log y axis. The bottom panel
shows annotated genes (arrows) and predicted intrinsic terminators [20]. For newly annotated genes we
show which gene family they belong too, if any (DUF is short for domain of unknown function). Two of the
newly annotated DUF497 genes have leaderless promoters; the start of the transcripts for DVU1638 and for
DVU1639 is ambiguous; DVU1645’s transcript starts 24 nucleotides upstream of its start codon; and there
is an antisense transcript for DVU1645 (an arsR-like regulator). The tiling data confirms the terminators
for DUF497-copG and for tRNA-Pro-1.

Figure 2 - Quality and coverage of data.
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(A) The distribution of raw logs intensities, as a function of probe type, for a single array hybridized
to cDNA from rich LS4 media. Probes were classified as coding, antisense, or intergenic using the original
genome annotation; control probes have random sequences that do not match the DvH genome but have
about the same GC content (63%). (B) The distribution of normalized logs intensity for rich media (average
of two replicates). The median value for the probes (excluding the random control probes) is zero and is
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shown with a vertical line. (C) The median normalized expression level for the sense and antisense strands of
each protein-coding gene from the original annotation. The dashed line shows x = y. (D) The distribution
of offsets between drops in the tiling data and the end of the intrinsic terminator’s stem-loop. (E) The
distribution of offsets between rises in the tiling data and peaks in 5 RNA-Seq. (F) The proportion of
different types of protein-coding genes that were detected by tiling or by shotgun proteomics. Genes were
considered detected by tiling if their smoothed intensity was above 0 throughout. Genes with a single
high-confidence peptide were considered detected by proteomics.

Figure 3 - Promoter motifs.

A. BioProspector bipartite motif E. MEME motif #3 (2.6% of promoters)
(67% of promoters)

B. MEME motif #1 (60% of promoters) F. RegPrecise motif for RpoN ()
(22 sites in common with MEME #3)

D. BioProspector bipartite motif H. RegPrecise motif for FliA (%)

for E. coli (67% of E. coli promoters) (6 sites in common with MEME #4)
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We show motifs from analyzing the -40 to +1 regions of 1,618 moderate-confidence DvH transcription
starts using (A) BioProspector [47] and (B,C,E,G) MEME [48]. For comparison, we also show a motif (D)
from analyzing 370 known promoters in E. coli K12 [27] with BioProspector and motifs from RegPrecise [29]
(F,H) for alternate Desulfovibrio sigma factors that were inferred by comparative genomics. Each motif is
shown as a sequence logo: at each position, the height of a nucleotide is proportional to its information
content in bits [58].

Figure 4 - Examples of modified protein annotations.
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We show the data and modifications to the annotation for three regions of the genome. Vertical lines
show the extents of the original gene annotations; the other plotting symbols are as in Figure 1. The left
panel shows that DVU1473 contains a terminator, while an ORF in another reading frame is expressed
start-to-stop. This ORF does not belong to a known family but is homologous to other proteins, so it
replaced DVU1473 in our annotation. The middle panel shows that only the C-terminal part of DVU1966 is
transcribed; the upstream-most start codon that is consistent with the data is shown but would reduce the
ORF to just 22 amino acids, so we removed it from our annotation. The right panel shows that DVU1344,
as originally annotated (in dotted line), begins upstream of its promoter; we selected a new start codon
downstream of the promoter.
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Figure 5 - Lengths of proteins.
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(A) The distribution of lengths of unchanged, removed proteins, and added proteins. Values above 400
are show in the rightmost bin. (B) The distribution of changes in length for the 123 proteins whose start
codons were modified.

Figure 6 - Lengths of 5’ and 3’ untranslated regions.
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Figure 7 - Promoters within genes can confound gene expression measurements.
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Correlation of Expression of Adjacent Genes

We show the distribution of co-expression for different types of pairs of adjacent genes on the same strand.
The correlation of expression log-ratios was computed from 785 comparisons in MicrobesOnline [11].
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Supplementary Figure 1 - The DVU1251-DVU1249 operon containing the antisense strand of DVU1250
(gidB).

4

2
|

0

Rich Tiling
Normalized Log2 Intensity

-2

+ Plus strand
~ Minus strand

4
!

2

Minimal Tiling
Normalized Log2 Intensity
0

-2

o
o
8
° Starts:
o8 —e— High-confidence
% rS —— Other
<5Y
Z o
xg
m gs _ ‘ }
i ‘
o I Ll | | |
Genes:
0 = QOriginal
S+ Removed
s New DVU1250
€ Terminators:
'0_’3 T Confirmed
3 Other
g DvU1249 DvU1251
|
i)
T T T T T
1335000 1336000 1337000 1338000 133900(

We are fairly confident that all three proteins are genuine: DVU1251 and DVU1249 were detected
by proteomics, and DVU1250 belongs to a well-known family (COG0357; PF02527) and shows moderate
expression as RNA.

Supplementary Figure 2 - Examples of complex operons

Plotting symbols are as in Figure 1; the vertical lines highlight predicted transcript starts and ends. On the
left, we show a predicted attenuator between DVU0169 and DVU0168. On the right, we show an internal
promoter just upstream of DVU1826. There may also be an attenuator downstream of DVU1826 but this
was not selected by our automated approach.
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Supplementary Figure 3 - Classifying local peaks in 5° RNA-Seq data as promoters or not.
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We show the distribution of log odds for all 13,822 potential transcription starts, and we compare distri-
bution of each feature for the 1,124 starts that have log odds above four and the 12,698 starts that have log
odds below zero. If a potential start does not correspond to a rise in the tiling data or does not match any
of the promoter motifs then the corresponding value is shown as a zero.

Additional Files

Additional file 1 — Intrinsic terminators
terminators.tab (tab-delimited file)

e scaffoldld, start, stop, strand — the terminators predicted by TransTermHP.

e stop — the end of the stem-loop, a few nucleotides upstream of the expected termination location.

e scaffoldId — 1944 for the main chromosome; 1945 for the megaplasmid.

e confirm — TRUE is this terminator was confirmed by our tiling data.
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Additional file 2 — Classification of transcript starts
transcript_starts.tab (tab-delimited file)

e scaffoldld, start, and strand — the potential promoter location.

e nf, nppp, and ntot — the number of reads at that location in the 1st library, the 2nd (exonuclease)
library, and the total.

e midrich — the middle of the corresponding rise in the tiling data from rich media (if any).

e atrich — the rise, corrected by 15 nt for the typical offset between the rise and the transcript start (if
any).

e rich — the local correlation of the rise (if any).

e midmin, atmin, min — similarly for minimal media.

e startm — the start of the corresponding hit to a promoter motif (if any)

e motif — which motif (1 and 2 for sigma 70 with different spacings; 3 for rpoN; 4 for fliA).

e bits — the bit score of the motif hit.

e The various logodds™ values gives the log odds values for each individual feature.

e lo — the total log odds; lo > 4 means high confidence.

Additional file 3 — Peptides detected in ENIGMA experiments with fractionation or pull-downs
peptides.tab (tab-delimited file)

e peptide — the sequence of the peptide detected.

e nFractions — the number of different fractions or experiments that this peptide was detected in.

Additional file 4 — Peptides detected in ENIGMA complete-proteome experiments
peptides2.tab (tab-delimited file)

e peptide — the sequence of the peptide detected.

e nFractions — the number of different fractions or experiments that this peptide was detected in.

Additional file 5 — Peptide spectra from protein fractions that were examined by hand
MS_Spectra_Details.xls (Excel format)

Additional file 6 — Gene annotations and revisions and lengths of the 5’ and 3’ UTRs
genes.tab (tab-delimited file)

e sysName — also known as locus tag; identifiers beginning with DVU or DVUA are from the original
annotation.

e locusld — the MicrobesOnline or VIMSS id (if from the original annotation).
e scaffoldld, strand, start, stop — the location of the gene.

e type — type=1 means protein-coding gene; type=7 means pseudogene derived from a protein-coding
gene; types 9 and 10 are CRISPR repeats and spacers; other types are various kinds of non-coding
RNAs.
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desc — description of the gene.

removed — if present, the reason the gene was removed.

changed — if present, the reason the gene was changed.

start.orig — the original start.

start.critica — the gene start from CRITICA, if this frame was selected by CRITICA.
start.rast — the gene start from RAST, if this frame was selected by RAST.

critld and rastld — ids for the CRITICA and RAST predictions; these are used in some of the Artemis
feature files.

UTRS5 — length of the 5 UTR for this gene, if there is a confident transcript start upstream; 0 indicates
a leaderless transcript.

UTRS3 — length of the 3’ UTR for this gene, if there is a confirmed terminator downstream.

Additional file 7 — Operon predictions
operons.tab (tab-delimited file)

scaffoldId, strand — which scaffold and strand the potential operon pair is on.
upg and dng — the locuslds for the upstream and downstream genes in the pair.
start.up, stop.up, start.dn, stop.dn — start and stop for the upstream and downstream genes.

min5 and rich5 — smoothed minimum expression between the genes from a tiling array (or missing if
it cannot be computed because there is little space between the genes).

ttConfirm — non-zero if there is a confirmed terminator between the genes.

rich.c.up — median expression of the coding strand of the upstream gene in rich media.

rich.n.up — median expression of the non-coding (antisense) strand of the upstream gene in rich media.
min.*.up — similarly for minimal media.

*.dn — similarly for the downstream gene.

start and lo — the location and log odds score of the most confident promoter between the two genes
(if any).
code — classification of the operon pair.

ExprSim — Pearson correlation of gene expression patterns of the two genes.
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