LLDA Variational Approximation Derivation

Model Parameters

\[\beta = P(S|Z) \]
\[\pi = P(L|Z) \]
\[\alpha = P(\theta) \]
\[\theta = P(Z|\theta) \]

(1)

Variational Parameters

Where \(D \) is the experiment.

\[\gamma = P(\theta|D) \]
\[\phi = P(Z|S, D) \]
\[\psi = P(L|S, D) \]

(2)

Node Distributions

\[p(\theta; \alpha) = \frac{\Gamma(\sum_{i=1}^{K} \alpha_i)}{\prod_{i=1}^{K} \Gamma(\alpha_i)} \prod_{i=1}^{K} \theta^{\alpha_i - 1} \]

(3)

\[p(Z = z|\theta) = \theta_z \]

(4)

\[p(S = s|Z = z; \beta) = \beta_{sz} \]

(5)

\[p(L = l|Z = z; \pi) = \pi_{lz} \]

(6)

Likelihood

\[p(\theta, Z, S, L|\alpha, \beta, \pi) = p(\theta; \alpha) \prod_{n=1}^{N} p(Z_n|\theta)p(S_n|Z_n; \beta)p(L_n|Z_n; \pi) \]

(7)

\[p(S, L|\alpha, \beta, \pi) = \int p(\theta; \alpha) \left(\prod_{n=1}^{N} \sum_{Z_n=1}^{K} p(Z_n|\theta)p(S_n|Z_n; \beta)p(L_n|Z_n; \pi) \right) d\theta \]

(8)

We will use the notation \(D \) to indicate the corpus of experiments. \(D \) is a \(V \times M \) matrix where there are \(V \) genes and \(M \) experiments in the corpus.

The log–likelihood function becomes

\[ll(\alpha, \beta, \pi) = \sum_{d=1}^{M} \log p(s_d, l_d|\alpha, \beta, \pi). \]

(9)

Multiplying and dividing by a variational distribution \(q \) gives

\[ll(\alpha, \beta, \pi) = \log \int p(\theta; \alpha) \left(\prod_{n=1}^{N} \sum_{Z_n=1}^{K} p(Z_n|\theta)p(S_n|Z_n; \beta)p(L_n|Z_n; \pi) \right) d\theta. \]

(10)

We have chosen to marginalize the label in this equation because it is only a partially observed random variable. In the cases the label is observed for a gene, the average becomes degenerate.

Applying Jensen’s Inequality gives

\[ll(\alpha, \beta, \pi) \geq E_q[\log p(\theta, Z, S|\alpha, \beta, \pi)] - E_q[\log q(\theta, Z, L)]. \]

(11)

Choosing the fully factorized distribution for \(q \) as a variational distribution gives

\[q(\theta, Z, L|\gamma, \phi, \psi) = q(\theta; \gamma)q(Z; \phi)q(L; \psi). \]

(12)
Then the bound to the log–likelihood in 11 can be factorized to give
\[
\mathcal{L}(\gamma, \phi, \psi; \alpha, \beta, \pi) = \\
E_q[p(\theta; \alpha)] + E_q[p(Z|\theta)] + E_q[p(S|Z; \beta)] + E_q[p(L|Z; \pi)] \\
- E_q[\log q(\theta; \gamma)] - E_q[\log q(Z; \phi)] - E_q[\log q(L; \psi)]
\]
(13)

Variational Bound Expectations

We now compute each of expectations in equation 13.

\[
E_q[p(\theta|\alpha)] = \log \Gamma \left(\sum_i \alpha_i \right) - \sum_i \log \Gamma(\alpha_i) + \sum_{i=1}^{K} (\alpha_i - 1) \left[\Psi(\gamma_i) - \Psi(\sum_j \gamma_j) \right]
\]
(14)

\[
E_q[p(Z = i|\theta)] = \sum_{n=1}^{N} \sum_{i=1}^{K} \phi_{ni} \left[\Psi(\gamma_i) - \Psi(\sum_j \gamma_j) \right]
\]
(15)

\[
E_q[p(S = v|Z = i; \beta)] = \sum_{n=1}^{N} \sum_{i=1}^{K} \sum_{j=1}^{L} \phi_{ni} s_n^k \log \beta_{ki}
\]
(16)

\[
E_q[p(L = j|Z = i; \pi)] = \sum_{n=1}^{N} \sum_{i=1}^{K} \sum_{l=1}^{L} \phi_{ni} \psi_{nj} \log \pi_{ji}
\]
(17)

\[
E_q[\log q(\theta)] = \log \Gamma \left(\sum_i \gamma_i \right) - \sum_i \log \Gamma(\gamma_i) + \sum_{i=1}^{K} (\gamma_i - 1) \left[\Psi(\gamma_i) - \Psi(\sum_j \gamma_j) \right]
\]
(18)

\[
E_q[\log q(Z; \phi)] = \sum_{n=1}^{N} \sum_{i=1}^{K} \phi_{ni} \log \phi_{ni}
\]
(19)

\[
E_q[\log q(L; \psi)] = \sum_{n=1}^{N} \sum_{j=1}^{L} \psi_{nj} \log \psi_{nj}
\]
(20)

Variational Parameter Estimation

Estimate of \(\phi \) Isolating the terms in equation 13 that reference \(\phi \) and including the constraint that \(\sum_i \phi_{ni} = 1, \forall n \) gives

\[
\mathcal{L}_{[\phi]} = \phi_{ni} \left[\Psi(\gamma_i) - \Psi(\sum_j \gamma_j) \right] + \sum_{k=1}^{V} \phi_{ni} s_n^k \log \beta_{ki} + \sum_{j=1}^{L} \phi_{ni} \psi_{nj} \log \pi_{ji} - \phi_{ni} \log \phi_{ni} + \lambda_n \left(\sum_{j=1}^{L} \phi_{nj} - 1 \right).
\]
(21)

Differentiating with respect to the parameter and setting equal to 0 gives

\[
\phi_{ni} \propto \exp \left(\Psi(\gamma_i) + \sum_{j=1}^{L} \psi_{nj} \log \pi_{ji} + \log \beta_{vi} \right)
\]
(22)

Estimate of \(\psi \) Isolating the terms in equation 13 that reference \(\psi \) and including the constraint that \(\sum_i \psi_{ni} = 1, \forall n \) gives

\[
\mathcal{L}_{[\psi]} = \sum_{i=1}^{K} \phi_{ni} \psi_{nj} \log \pi_{ji} - \psi_{nj} \log \psi_{nj} + \lambda_n \left(\sum_{j=1}^{L} \psi_{nj} - 1 \right).
\]
(23)

Differentiating with respect to the parameter and setting equal to 0 gives

\[
\psi_{nj} \propto \exp \left(\sum_{i=1}^{K} \phi_{ni} \log \pi_{ji} \right)
\]
(24)
Estimate of γ Isolating the terms in equation 13 that reference γ gives

$$L_{[\gamma]} = (\alpha_i - 1) \left[\Psi(\gamma_i) - \Psi(\sum_j \gamma_j) \right] + \sum_{n=1}^N \phi_{ni} \left[\Psi(\gamma_i) - \Psi(\sum_j \gamma_j) \right].$$

(25)

Differentiating with respect to the parameter and setting equal to 0 gives

$$\gamma_i = \alpha_i + \sum_{n=1}^N \phi_{ni}$$

(26)

Model Parameter Estimation

Estimate of β

$$L_{[\beta]} = \sum_{d=1}^M \sum_{n=1}^{N_d} \phi_{ni}^d s_{dn}^i \log \beta_{vi} + \lambda_i \left(\sum_{k=1}^V \beta_{vi} - 1 \right)$$

(27)

The update equation becomes

$$\beta_{vi} \propto \sum_{d=1}^M \sum_{n=1}^{N_d} \phi_{ni}^d s_{dn}^i$$

(28)

Estimate of π

$$L_{[\pi]} = \sum_{d=1}^M \sum_{n=1}^{N_d} \phi_{ni} \psi_{nj} \log \pi_{ji} + \lambda_i \left(\sum_{j=1}^L \pi_{ji} - 1 \right)$$

(29)

The update equation becomes

$$\pi_{ji} \propto \sum_{d=1}^M \sum_{n=1}^{N_d} \phi_{ni} \psi_{nj}$$

(30)

Estimate of α Since the parameters in the α vector are coupled a gradient descent procedure must be used. See [Blei et. al. 2002] for details.