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Abstract— This paper applies a recently developed, on-line,
search-based optimization technique called Selective Evolution-
ary Generation Systems (SEGS) to manage battery state-of-
charge and battery and generator delivered power in a Series
Hybrid Electric Vehicle (SHEV). This energy and power man-
agement problem was recently tackled with a model predictive
control approach that focused on improving overall powertrain
operation efficiency rather than optimizing fuel consumption.
However, the resultant constrained quadratic program is not
easily solvable on-line in standard automotive microcontrollers,
requiring explicit solutions obtained by off-line multiparametric
programming solvers for implementation. In this paper, with
the same motivation of maintaining SHEV operation in the
high efficiency region, we apply the SEGS algorithm to SHEV
control. The SEGS algorithm is not model-based but attains
globally optimal behavior on-line using a probabilistic fitness
distribution over a search space. It is also optimally search effi-
cient and tunably responsive in dynamic environments despite
taking only local and computationally-inexpensive decisions.
Simulation results that illustrate this SEGS application are
reported.

I. INTRODUCTION

ERIES Hybrid Electric Vehicles (SHEVs) belong to the
S class of vehicles that combine a stored-charge battery
with an internal combustion engine. They are distinguished
by wheels that are driven solely by an electric motor that is
in turn powered by either the engine via a generator, by the
battery, or by a combination of these powerplants [1]-[3]. This
engine-battery configuration not only achieves the benefits of
hybrid electric vehicles, viz., an increase in fuel efficiency and
a reduction of pollutant emissions [4], but the configuration
also decouples the engine from the wheels thereby allowing
design flexibility in locating engine and generator [1]. In the
SHEV configuration, power can be drawn from the generator
and engine to recharge the battery. Thus, the typical SHEV
energy and power management problem is to determine how
to best use the generator and battery to smoothly deliver
the power at the wheels that is demanded by a driver, while
maintaining the battery’s state-of-charge within acceptable
limits and optimizing fuel consumption.

SHEV energy and power management is a significant
problem; according to [5], there is still a requirement for
sophisticated coordinated control approaches to manage mul-
tiple heterogeneous power sources in automotive powertrain
architectures, and “correct estimation of the state of charge
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of a battery is one of the most difficult and important
research needs in battery management systems for electric
and hybrid-electric vehicles” [5]. Solution techniques for the
SHEV energy and power management problem take a number
of forms, including rule-based control strategies [6], [7],
dynamic programming [4], [8], [9], Pontryagin’s maximum
principle [10], [11], equivalent consumption minimization
strategies [11], [12], convex optimization [13], support vector
machines [14], smoothed transitions between steady-state
optimal operating points [15]-[17], online control [16], [18],
Model Predictive Control (MPC) [17], stochastic MPC [19],
[20], stochastic optimal control [21], etc.

Reference [17] considers a variant of the typical SHEV
energy and power management problem, by seeking improved
overall powertrain operation efficiency instead of optimizing
fuel consumption. Unfortunately, performing optimization “in
real time is, in general, impossible in standard automotive
microcontrollers. One reason is the insufficient memory
and computational resources of standard automotive [engine
control units], which may not allow the use of advanced
linear algebra libraries that speed up the solution of [the MPC
optimization problem]. There are also functional reasons for
not solving [the program] in real time, such as the number
of operations to be performed being difficult to predict, and
the implementation of advanced optimization routines being
hard to validate in embedded control architectures” [17]. The
deployed workaround is an explicit off-line solution of the
MPC problem using multi-parametric programming that is a
state feedback law computed off-line.

This paper considers a model-independent, on-line ap-
proach to SHEV energy and power management. SHEV oper-
ation is formulated similar to [17] to facilitate a similar future
investigation into overall powertrain efficiency improvement,
an emphasis that differs from previously-published on-line
approaches [16] and [18] that optimize fuel consumption.
The present work is also motivated, in part, by [21], which
models SHEV operation as a controlled Markov chain using
the average cost criterion to show that a stochastic control
policy that yields higher probabilities of SHEV states with
low cost and lower probabilities of SHEV states with high
cost is an optimal control policy.

As explained in Section III, the attainment of this kind
of probabilistic distribution over a set of states with (pos-
sibly time-varying) fitnesses is the goal of the recently
proposed Selective Evolutionary Generation Systems (SEGS)
algorithm [22], [23]. In this paper, the SEGS technique
achieves the desired target probability distribution over
a bounded space of SHEV states by taking only local,



computationally-inexpensive decisions. The search space is
explored using the feedback of fitness evaluation outcomes
that are sensed or determined external to the method. The
underlying theory [22] demonstrates that the approach is
not gradient-based, but instead dwells longer in states that
are more fit. The SEGS scheme also allows for tuning of
the classical exploration-exploitation trade off. Further, the
SEGS search is accomplished in a way that can be optimally
efficient as well as adaptive to dynamic changes of cost
or fitness. Search efficiency here refers to the trade off of
prior information about the search space for search effort
savings as quickly as possible [24]. Quick responsiveness to
environment dynamics exists because of model-independence,
which avoids erroneous search predispositions induced by
models rendered incorrect by environment changes.

Hence, one contribution of this paper is the demonstration
of a simulated real-time SHEV energy and power management
control policy that is computationally-inexpensive, search ef-
ficient and responsive. Another contribution is an exploration
of the effect that SEGS algorithm implementation variations
have on SHEV energy and power management performance.

The remainder of this paper is as follows. Section II
captures SHEV behavior for use with on-line energy and
power management strategies. Section III reviews choice
results of the SEGS method. Section IV applies variations of
the SEGS algorithm for SHEV energy and power management.
Lastly, Section V presents conclusions and future work.

II. SHEV MODELING

Similar to [17], the power at the wheels is linked to the
power of the motor by

Pmot(t) :Pwh(t)/nwh(t)a (1)

where P, (t) is the power provided by the SHEV electric
motor [kW], P,;(¢) is the power at the wheels [kW], and
Nwi(t) € (0,1] is the (possibly time-varying) efficiency of
transmitting power from SHEV motor to wheels. The motor
power request must be satisfied by a combination of power
supplied from the generator, Py, () [kW], and the battery,
Pou (1) KW,

At each discretized time-step k, the amount of power that
was previously provided by the generator Py, (k— 1) must be
augmented by a controller-varied step change APy, (k) that
yields the current delivered generator power Py, (k):

Paen(k) = Poen(k — 1) 4 APyen (k). 2)

The power change AP, (t) is upper and lower bounded
by APgen max and APgey min, respectively (APgen max > 0 and
APgen min < 0), to prevent abrupt generator power transitions
between time-steps. The provided generator power Py, (?)
is also upper and lower bounded by Pyep max and Poep min,
respectively, because of physical limitations. After computing
Pgen(k), the delivered battery power at time-step k is then

Prar (k) = Puor (k)/nmot (k) - Pgen(k)7 3)

where N (k) € (0,1] is the (possibly time-step-varying)
efficiency of transmitting power from SHEV battery and gen-
erator to the electric motor. When Py, (k) > Pyor (k) /Mo (k),
the battery charges, and when Py, (k) < Pyor (k) /Tmor (k), the
battery supplies power in addition to that delivered by the
generator. As with the generator, the output battery power
Pya (t) is also upper and lower bounded by Pyy max and
Pyar min» respectively, as a result of physical power delivery
and charge restrictions.

It is possible to augment the SHEV with controllable
friction brakes as follows. At each discretized time-step &,
the amount of power previously dissipated by these brakes
Py (k—1) is affected by a controller-varied step change
AP, (k) that provides the current braking power P (k):

Phrk(k) = Phrk(k — 1) —|—AP;,rk(k). 4)

The brake power change AP, (t) is upper and lower bounded
by APy max and APy min, respectively (AP max > 0 and
APpric min < 0). The braking power P, (¢) is also upper and

lower bounded by Py max and Py min = 0, respectively. As
a result of including the friction brakes, (1) is modified:

PBror (t) = Pun(t) /T (t) + Pori () &)

The SHEV battery state-of-charge, SoC(¢), may be speci-
fied by an integrator-type model:

SoC(k) = SoC(k — 1) — cPy (K), (6)

where SoC(k) is a fractional measure of the amount of battery
charge at time-step k, 0 < SoC(k) < 1, and ¢ [kW"'] is
a battery charge/discharge rate constant. A typical SHEV
controller requirement is to have SoC(k) track a desirable
state-of-charge SoC,,, and to ensure that SoC(k) stays within
operational limits SoCyes max and SoCgues min-

At each discretized time-step k, the actual wheel power is:

Poh et (k) = ((Pbat (k) +Pgen (k)) Nmot (k) — Pork (k)) Nwh (k) ;

(N
which may not equal driver wheel power demand P, (k) due
to saturation limits applied after computing (2) and (3). Thus,
secondary controller requirements stipulate that actual wheel
power quickly recovers to track driver demand, and that the
friction brake power matches a desirable value Pyt 4.5 = O.

III. SEGS HIGHLIGHTS

This section recaps the SEGS algorithm, and summarizes
how the technique constitutes a Markov chain Monte Carlo
method [25] that results in equilibrium higher probabilities
for fitter states in a search space (18). The description of the
SEGS scheme here is a condensed version of the theoretical
results in [22]. Briefly, at every time step, a decision between
a current state and a candidate state (which has been generated
from the current state using a probability distribution over
a set of all states) is made. This decision depends on the
comparative fitness of the two states, and is tunable with the
help of a parameter that is at O when fitness is irrelevant and
a random choice suffices, and approaches oo when the most fit
state is always chosen. The goal is to construct a Markov chain



decision process that has desirable optimization properties
in the long run, and that also has desirable responsiveness
properties in the short run so that the decision-making process
is quick to respond to environmental fluctuations. It turns out
that this process can be optimally search-efficient too.

A. Problem Definition

Let X be a search space with elements x;, 1 <i <n. The
search problem seeks a probability mass function ¢y : X — R
that accomplishes the specified objective below, and dynamic
transition laws that cause X to have probability distribution
¢x. Let z: X — Z be an unknown, computable, and possibly
changing function that we are interested in. The set Z is a
metric space. Suppose that we are given a desired element
Zdes 1N the image of z, and we wish to find x € X such that
[|z(x) — zges|| is small (i.e., z(x) = z4e5). Formally, we want a
¢x that helps achieve a known expected value Y > 0, i.e.,

E gy [[|2(x) = zaesll] = Y- (8)

In the above, Y is effectively a tolerance, i.e., it is the
acceptable mean distance between candidates in the image of
z compared to the desired image value. The scheme to find
¢x should be efficient in that it trades off prior information
about X for search effort savings as quickly as possible.

Let f:Z — R™. We allow the method to employ a function
F:X —-R":x— F(x) =(foz)(x) = f(z(x)), a real-valued,
positive fitness function. We desire @x (x;) to be responsive
to perturbations, i.e., for all x; € X,

9 ¢x (xi)
0. 9
) " ©)
B. The Selective Evolutionary Generation Systems Algorithm

To search in X, a Markov chain Monte Carlo method
is postulated that makes use of a selective evolutionary
generation system, which is a quintuple I' = (X, R, P, G, F),
where

o X is the set in which to search, X = {x1,x2,...,X,};

e R is a “resource” set whose elements can be utilized to

transition between elements of X, R = {ri,ra,...,rm};

e P:R— (0,1] is a probability mass function on R, given

m

by P(ri) =Pt[%Z = ri] = pi, kilpk =1

e G:X xR — X is a mapping, called a “generation
function,” from one element of X to another using a
resource from R;

e F:X — RT is a positive function that evaluates the
fitness of elements of X;

« X is reachable through G and R; and

« the dynamics of the system are given by

2 (t+1) = Select(2(t),G(2 (1), %(t)),N), (10)

where Select : X x X x N — X is a random function
such that if x; € X and x, € X are any two elements,
and N € N is the level of selectivity, then

N
x1 with probability La
Select(x1,x2,N) = . I, F(XII)VA(IJI): o
xp  with probability W
(11

In (10), Z'(¢) denotes the realization of a random element
from X at time #, Z(r) denotes the realization of a random
resource at time ¢, G(Z (¢),%(t)) denotes the outcome
mapped from the realized element from X at time ¢ utilizing
the resource at time #, and 2°(0) has a known probability
mass function. Also in (10), the probability of realizing
an element from X at some future time given the present
realization of an element from X is conditionally independent
of the past time history of X element realizations. Thus, the
dynamics of a selective evolutionary generation system form
a discrete-time homogeneous Markov chain.

The Select function has a number of interesting properties
[22], including that for all N,

Pr[Select(x1,x2,N) = x1] _ (F(xl))N
Pr[Select (x1,x3,N) = x3] F(x2)/)

(12)

That is, the ratio of the probabilities of selecting any two
elements from X is equal to the ratio of their respective
fitnesses raised to the power N. This property is called
“local rationality,” where “rational” refers to the ratio of the
probabilities. For any x;,x; € X and r; € R of the selective
evolutionary generation system I' = (X,R,P,G,F), we can
define the descendancy tensor, 8, with elements

1 ifx;j=Gxi,re), 1<i<n, 1 <j<n,

Oijk = 1 <k<m, (13)

0 otherwise.

Hence, the descendancy tensor indicates whether it is possible
to produce offspring x; in one step from progenitor x; via
generation function G that employs a resource r;. We can use
this tensor to create a matrix that represents the conditional
probability of transitioning to x; from x;, by utilizing the
probability of selecting each available element in R and
summing over all m elements. The matrix ¥, called the
unselective matrix of transition probabilities, has elements

%ij = Prloffspring is x; | progenitor is x;] (14)
m

=) Ojkpk, 1<i<n, 1<j<n,
=1

15)

and is a stochastic matrix [22]. The matrix of transition
probabilities, P, has elements

Pj=Pr[ 2 (t+1) =ux; | 2(t) = xi], (16)
1 ..
1js v )
1+<F(x,-)>N%J J7
F(Xj)
SN o
Yi + ZIWYM if j=1i,
= Y
Zi(75)

and is also a stochastic matrix [22].

The central idea behind the Selective Evolutionary Gen-
eration Systems (SEGS) algorithm is to deploy an ergodic
selective evolutionary generation system I' = (X, R, P, G,
F) with symmetric ¥ (i.e., equiprobable forward and reverse
transitions between any pair of elements from X prior to the
selection process) so that the Markov chain that represents the



resultant stochastic dynamics has a row vector of stationary

probabilities , 7 = [m ),
F(x: N
n,:#,lgign. (18)
kzl F (Xk)N

This stationary distribution represents a more general, proba-
bilistic version of the optimization of an objective function.
The Markov chain selects the state of maximum fitness with
the highest stationary probability, and, in the limit as N
approaches oo, this probability is 1. That is, N tunes the
concentration of the stationary probability distribution around
the state of maximum fitness, and in the limit as N approaches
oo, the problem and solution then revert to one of standard, oft-
line optimization, i.e., a delta function at an element of X. In
[22], it is also shown that the Markov chain is time-reversible,
that the SEGS algorithm is correct, and that increasing N
reduces the mean hitting time to the fittest element.

The Markov chain that represents the stochastic dynamics
of a selective evolutionary generation system belongs (as
proved in [22]) to a class of time-homogeneous, irreducible,
ergodic Markov chains that are said to “behave rationally”
with respect to fitness F with level N. Such chains are
characterized by stationary probability row vectors with
elements that satisfy

”’(”"’)) J1<i<n 1<j<n, (19
m \F(x))

which is a definition of “global rationality,” where “rational”
again refers to the ratio of the probabilities and “global” refers
to the stationarity of these probabilities.

Reference [23] discusses how Markov chain rational
behavior minimizes a cross-entropy function to yield search
entropy. Thereafter, the maximization of this search entropy is
investigated, based on results about efficient search from [24]
and [26] that specify entropy maximization to eliminate search
biases. Such search biases can be induced by, for example,
a model that predisposes the optimization process, which
causes inefficient search when the model itself is incorrect
as a result of internal or external change.

During model-independent search-based optimization with
time-varying objective function or time-varying state fitnesses,
an exponential fitness function is proved to relate Markov
chain rational behavior, search entropy and optimally efficient
search [23]. The implication is that a fitness function

F(x;) = o () =24e5)?) (20)
together with a scheme that makes use of Markov chain ratio-
nal behavior (for instance, the SEGS technique) guarantees
efficient search-based optimization.

Responsiveness of Markov chains that behave rationally is
taken as the sensitivity of the stationary distribution to changes
in fitness. Specifically, for any time-homogeneous, irreducible,
ergodic Markov chain, the extrinsic resilience of sta;e X

Ul

to changes in the fitness of state x;, j # i, is p;; = IF(x))’
X J

and the intrinsic resilience of state x; to changes in its own

fitness is p;; = % The Markov chain is “responsive” if

pij 70 for all i and j. Reference [22] proves that the level
of selectivity has the following asymptotic effect: p;j|,_, =
J#
Dii =0, and lim p;; = lim p; = 0. That is, standard, off-
N—yoo N—ro0

J#
line optimization (N — o) and purely random optimization

(N = 0) are unresponsive. Because the expected hitting time
of the element from X that optimizes fitness also decreases
with an increasing level of selectivity N, a trade-off exists
between this expected hitting time and responsiveness, with
the trade-off controlled by N.

Reference [22] goes on to prove that Markov chain rational
behavior is a sufficient condition for responsiveness, while
ergodicity is a necessary condition for responsiveness. In
addition, [22] also provides four equations to analyze the
effect of changes in fitness on elements of the matrix of
transition probabilities, P. These equations demonstrate that,
unlike gradient ascent optimization where the transition to
another element from X is directly proportional to the fitness
value, optimization with Markov chain rational behavior is
reminiscent of the retardation property in the original rational
behavior [27]; the stochastic process “slows down” transitions
in more favorable fitness conditions to take advantage of the
external environment.

IV. SHEV CONTROL WITH SEGS

We consider the SHEV model with friction brakes
from Section II with the following parameters: 7, =
0.95; APgen max = 11 kKW; APgen min = —11 kKW; Pgen max —
80 kW; Pgen min = =3 KW; Nmor = 0.95; Pyat max = 40 kKW;
Poat min = —30 kW; ¢ = 1.25x 1075 kW5 APy ppax =
24 kW, AP/Jrk min = —24 kw» Pbrk max — 24 kW, Phrk min —
0 kW Pyrk des = 0 kW; S0Cyes = 0.5; S0Cyes max = 0.6;
and SoCyes min = 0.4. We also specify the following se-
lective evolutionary generation system for use with the
SEGS algorithm. The set X is the couple of Py, (k)
(kW] and Py (k) [kW] with respective elements from
the sets: {Pgen mimPgen min + 17 R 7Pgen max — lanen max} and
{Pbrk mins Pork min + 2; e s Pork max — 2anrk max}- The set R
is the set product of feasible variations of APy, (k)
(kW]: {-22,-20,...,—4,—-2,—-1,0,1,2,4,...,20,22} and
of APy (k) [kW]: {—24,-22,...,-2,0,2,...,22,24}. Thus,
the generation function G is (2) and (4) as long as Pyep min <
Pgen (k) < Pgen max A0d Py min < P (k) < Pork max; other-
wise, Pgen(k) = Pyen(k— 1) if the saturation on (2) is active
and Py (k) = Py (k— 1) if the saturation on (4) is active.

The above is a modified version of a random walk over a
discretized search space, where the modification involves
selection dynamics described by the Select function to
produce a selective evolutionary generation system. Since
the primary objective is for SoC(t) to track SoCy.s(t) using
efficient search, we choose to use a fitness function

F (APyen () = exp (— (K (S0Cyes () — SoC (k)))2> . 1)

where Ky =15 and SoC(k) is the output of the SHEV
battery model in simulation. Because SoC(k) is determined



external to the SEGS algorithm, it can be a sensor reading in
practice. The fitness function is chosen such that the condition
SoC(k) = SoCg,s(k) has maximal unit fitness, and the con-
ditions SoC(k) = S0Cyes max(k) and SoC(k) = SoCyes min(k)
have only 10% of maximum fitness. This low fitness ensures
“high-gain control” at or beyond SoC constraint boundaries.
The initial level of selectivity is N = 100.

Sample results of SHEV control with the SEGS technique
for SoC(0) = 0.47 and Py+(0) = 0 are presented in Figs. 1—
3 for a step-like power-demand profile, a portion of the
UDDS city power-demand profile, and a portion of the US06
highway power-demand profile, respectively. In Fig. 1, it
is clear that the desired battery state-of-charge is tracked,
although the chosen level of selectivity permits excursions
of the state-of-charge to undesirable values. During intervals
of accurate state-of-charge tracking, the generator actuation
is pulse-width-modulated. There are also instances when the
actual wheel power does not match the demanded power,
and when the friction brakes are needlessly activated. This
controller behavior may be attributed to a fitness function
that does not enforce wheel and brake power requirements.

Low wheel power requests are made of the controller by
the UDDS city power-demand profile in Fig. 2. The state-of-
charge oscillates between 0.46 and 0.53 because of alternate
use of the generator and battery to satisfy the low power
requests. The available wheel power always meets or exceeds
the demand. Compared to the related plot in [17] where the
SHEYV is operated with high efficiency, the state-of-charge
values there decrease from 0.47 to 0.43 over the same period.

In Fig. 3, the SEGS controller satisfies the high wheel
power requests typical of the US06 highway power-demand
profile with the generator while maintaining the state-of-
charge between 0.42 and 0.49. Here, an occasional lack of
available wheel power is more pronounced because the wheel
power demand is not enforced. Similarly, there is an interval
when brake power is zero despite excess available wheel
power. Compared to the related plot in [17] where the SHEV
is operated with high efficiency, a lower variation exists here
over the same period (plotted there from 110s to 200s); the
lowest state-of-charge there is 0.44 and the highest is 0.53.

Fig. 4 corroborates the hypothesis by demonstrating im-
proved state-of-charge reference tracking on the step-like
power demand profile at higher N; here, N = 1000. The pulse-
width modulation of the generator is also more apparent, with
this behavior slightly altered by friction brake action.

To rectify inadequate available wheel power and in-
appropriate friction braking, we empirically demonstrate
a modified efficient-search SEGS algorithm that enforces
multiple criteria through a weighted sum of exponen-
tial fitness functions. For instance, consider the fit-
ness function, F = 0.5exp (— (K (S0Cyes (k) — SoC (k)))2) +

2
0.5exp < (Kf (M)) , where the second

Poen max+Poar max
term ensures that the wheel power demand is met. This term
includes a normalization factor consisting of total generator
and battery power. Sample SHEV control performance (N =
100) of satisfactory state-of-charge tracking and an accurate
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realization of wheel power demand is depicted in Fig. 5.
When the state-of-charge weight is reduced from
0.5 to 0.4 and a third term for friction brakes such



as 0.1exp ﬂ— (1.5 (Pork des (k) — Pori (K) /Pyt ,,W))Z) is in-
cluded (the 1.5 factor yields 10% fitness at maximum braking),
control trajectories like that of Fig. 6 result. Here, the desired
state-of-charge, driver wheel power demand, and infrequent

friction brake use criterion are all met.
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Fig. 5. Sample SEGS controller performance on a step-like power-demand
profile with a fitness function that enforces both wheel power demand and
desirable state-of-charge.
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profile with a fitness function that enforces desirable state-of-charge, wheel
power demand, and reduced friction brake use.

V. CONCLUDING REMARKS

This paper has illustrated the efficacy of computationally-
inexpensive selective evolutionary generation in managing
SHEYV energy and power on-line. The technique is pursued
because it constitutes a model-independent control policy that
yields a target distribution of high probabilities for fit SHEV
states and low probabilities for unfit states.

Future work includes exploring dynamically changing
levels of selectivity as well as responsiveness to driving
history. Overall powertrain efficiency improvement will also
be demonstrated, as will increased fuel economy.
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