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KEYWORDS has shown much promise in recent years, with the poten-
tial to significantly impact such diverse areas as space col-
Artificial life, information, moon, probabilistic genera-onization, bioengineering, evolutionary software and au-
tion theory, replication, reproduction, robotic colongifs tonomous manufacturing. This paper investigates one of
reproducing system, von Neumann threshold. the feasibility requirements of self-reproducing enstie
and is set within the context of a lunar robotic colony.

ABSTRACT L
- 1.1 Motivation

This paper examines the information requirement of&,rrent phased approaches to Martian exploration see the
self-reproducing system in a lunar setting. Prior work {felopment of an enduring robotic presence on the Moon
extended to allow self-reproducing entities the ability {3 the next five years. An International Lunar Robotic Vil-
select required resources in a probabilistic manner, Ie@éjg-e that will precede the establishment of a permanent
ing to the notion of probabilistic reproduction. The quany,man outpost on the Moon has also been proposed for
titative requirement for probabilistic production of a ROMH14. This colony of advanced robots from the various
degenerate offspring, i.e., an offspring with the same ig;_gperating space agencies would be designed to go be-
productive capability as the progenitor, is derived. TRgn tele-presence from Earth, by sharing facilities that
existence of a von Neumann rank threshold below whighe advantage of available lunar resources, conducting
degeneracy always occurs is demonstrated. life support experiments, and building the infrastructure
The parallels between generation and communication necessary for human-rlobot Moon and Mars exploratlpp.
Xecent space-exploration roadmaps suggest that individ-

studied in some detail, and illustrated with examples. Uti- . .
.Ual countries will deploy these advanced robots on an as-

lizing the established results of Information Theory, it ISeeded basis to expand the size of the colon
shown that the channel capacity of a probabilistic gener- Y-

ation system is the von Neumann information thresholdpw much more efficient then, would it be to have robots
and the maximum reproduction rate of the system is taedowed with the capacity for self-reproduction. These
von Neumann complexity threshold. machines would be able to utilize available resources on-
site to enlarge their numbers when deemed necessary for
The paper also proposes a simplified model of a lung@rgiven task. Such technology is not dependent on ei-
robotic colony to which the theoretical results are applher the launch capabilities or the fiscal constraints sur-
cable. rounding the multiple launches of robots required for the
colony, and therefore may provide a highly cost-effective

solution.
1 INTRODUCTION

In general, robots require mass, energy, and information
Artificially-created self-reproducing machines have lony knowledge in order to perform their assigned tasks.
captivated the imagination of mankind. Scientific réAhile a seed robot endowed with some start-up resources
search conducted to realize the dream of self-reproductismeeded to initiate a colony, it is not feasible to deploy



the robot with all the mass and energy necessary for s@6 years. Recently, [3] developed a novel theory of gener-
reproduction, nor is it expected that the first seed robot ation that is able to compute this von Neumann threshold,
rives with all the knowledge it requires for survival, sinceith results that yield a necessary and sufficient condition
it can learn from its actions within the environment. Ador non-degeneracy in self-reproduction.

cordingly, there are bounds on the minimum requirements

of information, mass, and energy for the seed of a seff3 contribution

reproducing system. This work focuses solely on the in-

formation that is a fundamental requirement for the seédis work extends the results of [3] by proposing a prob-
abilistic version of Generation Theory. This theory is dif-

ferent from that in [1], where a probabilistic measure of

self-replicability is computed by comparing the probabil-
1.2 Background ity of a machine spontaneously appearing in the environ-

ment to the probability that a new machine would appear,
Before proceeding any further, we should first stagiven that one already existed.

what is meant by the .following terms that will be usegh,o ey theory allows us to explicitly quantify the fun-

throughout the paper: reproduction, replication, Selfymental information requirement for self-reproduction.
reproduction, and self-replication. For a historical pefyg requirement is imposed when probabilistically se-
spective of the first two terms, the reader is referred Igl:ting from available resources to ensure that non-

Freitas” excellent discussion on the subject in [2]. We,generate offspring are produced with high probability.

consider reproduction in biological systems to imply thgie 46 on to demonstrate how similar reproduction and

capacity for genetic mutations and the potential for evolys .\ munication are to each other, and provide illustra-

tion. Thus from an information standpoint, reproductiof,e examples. Using established results from Informa-
involves a change to the DNA code during the generatigg, Theory, we develop the channel capacity and rate of
of progeny. Likewise, we will takeeproductionin an 4 renroduction process, and relate it to quantities that hav

artificia_ll genera}t?on System to imply_a change in the e previously defined in [3]: the von Neumann thresh-
formation specifications of an offspring. We reserve th§ys of information and complexity respectively.
termreplication for progeny that have identical informa-

tion content to that of the progenit@elf-reproducingnd

self-replicatingwill be used to refer to those entities th
perform the information equivalent of asexual reprodugection 2 presents the tenets of Probabilistic Generation
tion or mitosis, i.e., the entities can reproduce or refdicarheory, Section 3 documents the parallels that exist with
based on the information specifications of only one prinformation Theory, and Section 4 details a plan for a sim-

genitor. plified model of a self-reproducing lunar robotic colony.

a1.4 Paper Layout

The field of self-reproduction owes much to the efforts
of John von Neumann [7], whose work on the theory of
automata in the 1940s and 1950s inspired extensive re

search into the simulation and implementation of celly- theory advanced here formaliz if-reoroduction b
lar automata, computer programs, kinematic machin;@e cory advanced here lormalizes sefi-reproduction by

molecular machines, and even robotic colonies. A dér_fachines,”aterm describing any entity that is capable of

tailed overview of the research activities in the field i%rhoducmgbar; offsbprlrtlg _regardless of its P hysm;’:xl nfziture.
presented in [2, 6]. us a robot, a bacterium, or even a piece of software

code is considered to be a machine in this theory if they
In a series of lectures in the 1940s [7], John von Ne€an each produce another robot, bacterium or some lines
mann specified four functional requirements for reproduef code respectively. These machines require resources
tion: 1) a description of the progenitor; 2) a set of selto self-reproduce, and each resource is chosen with some
reproduction instructions; 3) a transfer of that desapipti Prior probability. The selected resource is then manipu-
from the progenitor to its offspring; and, 4) an input téted by the parent machine via an embedded generation
the process to allow for variation. He also postulated tRétion to produce an outcome, which itself may or may
existence of a threshold of complexity below which arfjot be a machine. Thus we can state the following:

aftempt at self-reproduction was doomed to degener%&‘finition 1. A Probabilistic Generation Systelis a
However, he did not define either complexity or degeney- intupler — (U,M, R P,G), where

: u
acy, nor did he go on to compute the threshold’s value. %n
extensive literature survey in [4] indicates that no one hade U is auniversal sethat contains machines, resources

published an evaluation of this threshold in the following  and outcomes of attempts at self-reproduction;

A PROBABILISTIC THEORY OF GENERATION




e M CU is aset of machinem the context described; Of course, if we set = 0, then we allow every machine
to e-reproduce no matter what resource is selected. This
e RC U is aset of resourceghat can be utilized for is termedrFree Generationlf € = 1, then the determinis-
self-reproduction; tic theory of generation proposed in [3] is recovered, and
only one resource is required to generate the desired off-
P is a probability mass function (pmf) dR that is, spring with probability 1. This is calle8trict Generation
R— R with P[r] € [0,1] andy; P[ri] = 1; or Unity Generation

e G:M xR — U is a generation function that maps Definition 2. The Generation Sets a probabilistic gen-
machine and a resource into an outcome in the uffation system are described as:

versal set, and not necessarily in the set of machlnes.. Mo = M. the set of all machines;

e MF ;, the set of all machines that agecapable of
U producing a machine d¥l¢, vi > 0. That is, forx €
M¢, 1, 3y € M{ such thaPly = G(x,r)] > &.

These sets are nested as indicated by the following propo-
sition and Figure 2.

Proposition 1. Mo D M{ D M5 D --- D Mf D M#

Proof. See Appendix. O
Figure 1: Pictorial representation of Definition 1.

Furthermore, it is possible thdl "R # @, and also
MUR#U, asiillustrated in Figure 1. The former implies
that machines can belong to the set of resources, and the
latter states that outcomes of attempts at generation may
be neither machines nor resources.

One can define an indicator functidn,over a predicate,
p, such that:

[(p)=1if p=True
I(p)=0if p=False
Thus, the probability of a machines M processing a re-

sourcer € Rto generate an outconyec U may be written
as:

Ply=G(xr)]= r;' (y=G(xr))-PIr]. (1) Figure 2: The nesting arrangement of th@eneration
sets.
If, in (1), Ply = G(x,r)] > &, where¢ > 0, then we say
that “x is e-capable of generating” and we call the pro-
cesse-reproduction If we haveP[x = G(x,r)] > €in (1), As will be shown later in this section, the innermost gen-
whereg > 0, then we say thatX'is e-capable of generat-eration set is important for self-reproduction. This set ca
ing itself,” and we call the processreplication be defined as:

The four functional requirements for reproduction stipu-
lated by von Neumann are captured above. There is a
description (the parenk), a set of self-reproduction in-Proposition 2. If x € MF\M{,; and Ay = G(x,r)] > ¢,
structions (the generation functio®), a transfer of that £ > 0, then y¢ MF.

description (1), and an input to the process (the resource,
r). Proof. See Appendix. O

ME = ﬁMf. @)
i=0



The meaning of this proposition is that generation alwayis definition facilitates a key discussion on the

proceeds outwards. generation-set location of a parent machine capabé of
replication. We first consider the more general case of

Corollary 1. If x € MF\ME, ,, then any sequence ef g-generation cycles, defined as follows.

generation starting from x will produce an outcome i

; . Definition 5. An g-generation cyclas a sequence of-
in at most i- 1 steps. g y q

generations resulting in the production of a machine iden-

Corollary 2. If x € Mf\ME 4, then it cannot-replicate. tical to itself aftem generations.

. Proposition 5. If X1, Xo,. .., %, form ane-generation cycle
If replication is desired, Proposition 2 and its corollarieof order n, then xe M§, wherel <i <n.
place a requirement on Fhe Iocatio_n of a machine withi§}) ¢ gee Appendix. O
the sets of a probabilistic generation sytem. To further
ascertain the nature of this requirement, we develop tGerollary 3. If a machine, x, is capable @freplication
notion of rank, as well as a few other propositions. (an e-generation cycle of order one) in a probabilistic
generation system, thenexM&.

Definition 3. Therank of a probablllgtlc generat_lon SYS\We now show that thérinciple of Degeneracystated
tem p¢(I"), wherel = (U, M, R P,G) with generation sets

e . | e ae in [3] also holds true in the probabilistic version of the
M. i 20, is the smallest integgr such thal, = Mo-1- theory. Having identified that machines capablecef

If Vi, Mf # M, ,, then the generation system has infinitg,yjication must belong tMZ, and that any exit fronwZ
rank. is irreversible, we demonstrate that it is possible for off-

. L spring machines to belong M¢ as long as their parents
Proposition 3. If Mf = M£,; for a probabilistic genera- dg asgwell g g P

i+1
tion system with finite rang®(I"), thenVj > i, we have - o .
ME = ME. Proposition 6. Assume that a probabilistic generation
) systenT = (U,M,R P,G) has finite ranko®(I") = p, and
Proof. See Appendix. 1 letxe ME. Thendy € ME such that FB/ = G(X, r)] > €.
Proof. See Appendix. O

Hence, the nesting of the generation sets stop at the i
ger p for a probabilistic generation system of finite ran
p. All generation sets of higher order (up to and inclu
ing M%) are equal. The next proposition indicates that |
a probabilistic generation system has a finite number o

machines, then its rank will always be finite. Proposition 6 quantifies non-degenerateeproduction
and e-replication. It corroborates von Neumann’s re-

Proposition 4. For a probabilistic generation system= marks, and indicates that there is a minimum threshold
(U,M,R P,G) where pé(T") is finite, a finite number of beyond which a machine is ablegegenerate an offspring

%'rollary 4. Assume that a probabilistic generation sys-
ml = (U,M,R,P,G) has finite rankp®(I') = p, and
iso has|M§| # 0 and |[ME| < «. Then M, contains at
?st ones-generation cycle of order at mog¥Z |.

machines|M|, results inp® (") < [M]. without a decrease in generation rank. We call this/thre
Neumann Rank Threshgld, and define
Proof. See Appendix. O
i o = pf(n). ®)

We can also describe an interesting fact about the mini-
mum number of resource elements in a probabilistic gen-
eration system, given certain assumptions.

If p#(") = oo, then this implies thafM| = . However,
M| = o doesnot necessarily imply? () = c. It is pos-
sible in the latter case fgo*(I") to be finite, including
Zero. Proposition 7. Assume that a probabilistic generation
systenT = (U,M,R P,G) has finite ranko®(I") = p, and
Having defined the rank of a probabilistic generation syttat a machine ye M;fl\Mg can bee-generated, where
tem, we can now go on to explain the rank of a machirn@5 < € < 1. Then the resource set, R, must contain at
least two elements.
Definition 4. Therank of a machingp®(x), in a prob- Proof. See Appendix. =
abilistic generation syste = (U,M,R,P,G) with gen- Corollary 5. If every machine can be-generated in a
eration setdVf, i > 0, andp®(I') = p, is equal toi if probabilistic generation system= (U,M,R P,G), where
x € MF\M{,; (“deficient generation rank”), or is equal td.5 < € < 1, and the resource set is a singleton, then the
p if xe NiZoM¢ (“full generation rank”). rank of the systenp®(I"), must be eithe® or c.



We now proceed to analyze the effects of changesdn This proposition makes intuitive sense. If the generation
the generation sets of the system. sets become bigger with decreasingthen it stands to

reason that more machines will be abletoeplicate, and
Proposition 8. Given a probabilistic generation systeMnerefore, 7 = p*(I') must be correspondingly reduced.
r :0(U,M,R,P,G), if &1 < &, then M D M2, for all | fact, an even stronger statement can be made.
i >0.

Proposition 10. Given a probabilistic generation system
Proof. See Appendix. L) wherel = (U,M, R, P,G) with finite rankp® (') = p, € —

0 implies that M, — Mo.

Corollary 6. If x € M{*\M{1,, ande; < &, thenp®(x) >

pe2(x). Proof. See Appendix. O
Having formalized probabilistic self-reproduction with
the above definitions and propositions, we now demon-
strate the applicability of the theory and its usefulness as
a tool for analysis.

3 THE INFORMATION THEORY ANALOGUE

The processes of generation and communication [5] dis-
play remarkable parallels; indeed, communication may be
viewed as the reproduction of a transmitted message at the
receiving end of a communication channel. Table 1 indi-
cates the full extent of these similarities.

(@) p&r(x) =i To explain the parallels fully, consider the typical diagra
of a communication process [5] modified in accordance
with Table 1 as shown in Figure 4, in order to yield a cor-
responding diagram of a generation process.

The parent machine acts as the information source, pro-
ducing the instructions (a message) that will create an off-
spring. These instructions can be coded, just like DNA,

prior to the generation process (correspondingly, the mes-
sage can be encoded into a syntactically correct form prior
to transmission). There is a non-zero probability that

mutations may occur during reproduction (the message
may be corrupted by noise), and different resources (var-
ious noise samples) will produce different outcomes. If

the probability of producing a certain outcome exceeds a
threshold, then that outcome is produced.

(b) p72(x) =i—1

Typically when we writey = G(x,r), we combine the in-
formation source and the transmitter inkpand the re-

Figure 3: The effect of increasecbn machine rank. ceiver and destination intg as depicted in Figure 4.

The next example depicts how probabilistic generation
theory may be successfully utilized in a binary communi-

It turns out that the rank of a machine is not the only thirfgdtion channel, and also sheds some light on the changes
affected by a change in. The rank of a probabilistic in the generation sets as a result of varying

generation system, and hence the von Neumann threshglgh yple 1. Binary Communication Channel With Prob-

Figure 3 illustrates Corollary 6.

also vary in the manner indicated below. abilistically Selected Noise Sequences

Proposition 9. Given a probabilistic generation systentet M, the set of messages, be represented by a set of

M= (U,M,RPG),if & < &, thenp® (') < p2(I). syntactically correct binary sequences, where the syntax
_ is as follows: a length of 4 symbols; and the number of

Proof. See Appendix. U ones in the sequence is even and greater than zero.
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Table 1: Comparison of the Probabilistic Generation Syste@eneration and Information Theories

Generation Theory Information Theory
U Universal set of machines, resources and outiniversal set of representations of messages,
comes of attempts at self-reproduction representations of noise samples, and outcomes
of attempts at communication
M Set of machines Set of syntactically correct represemtsitif
messages
R Set of resources Set of representations of noise samplgs tha

when used in a communication channel, deter-
ministically alter a portion of the transmitted

message
P pmfon R (probability of selection) pmfon R (probability aflection)
G Generation functionG: M xR— U communication channel where the altering of a

message occurs deterministically based on the
probabilistic choice of noise sampl&,: M x
R—U

Mo\M;  Set of machines that, when attemptinggo Set of syntactically correct messages that, when
reproduce, create offspring that are never maransmitted, are interpreted as messages that
chines no matter which resource is selected are never syntactically correct no matter which

noise sample is selected

MF\ME ,  Set of machines such that, for all sequences Slet of syntactically correct messages such that,
i +1 resources, these machinegproduce an for all sequences af+ 1 noise samples, the re-
offspring that is not a machine at some generaursive transmission of these messages results
tion in the sequence in an outcome that can never be interpreted as a

syntactically correct message at some commu-
nication in the sequence

ME Set of machines such that there exists an irset of syntactically correct messages such that

finitely long sequence of resources for whichihere exists an infinitely long sequence of noise

all the e-offsprings are machines samples for which all the transmitted messages

are syntactically correct
€ €€0,1] =0
Thus the set of acceptable messages is Let G be a binary communication channel as indicated in
Figure 5. This channel has crossover probabilities given
{1111,110010101001,01100101 0011}. by the second and third bits of the selected noise resource,

and correct-transmission probabilities given by the first
Let R, the set of noise sequences, be represented by aasek fourth bits of the selected noise resource.
of binary sequences with the following characteristics: a
length of 4 symbols; either the first bit or the second bit is 0 bit 1

a one; and either the third bit or the fourth bit is a one. 0
bit 2
Thus the set of noise sequences is
{1001,010110100110}. 1 bit 3 1
bit 4
Let P be a pmf orR, and taken for this example to be . . L
P IS examp Figure 5: Binary communication channel representihg

{0.5,0.1,0.15,0.25}. in Example 1.



Suppose that the message 1111 is given, and that the 0 0
output message (@-offspring) desired iy = 1111, with 1
e=1. x—=1111 ya = 0000
Considery; = G(x,r1), wherer; = 1001. As shown in the 1
diagram of Figure 6, the crossover probabilities are both 1 1
0,and as aresuly; =1111. 0
L Figure 9:ya = G(X,r4).
0 0
0 Thus we can calculately = G(x,r)] =1x0.5+1x 0.1+
x=1111 y1=1111 " 0% 0.15+0x0.25=0.6.
0 Clearly, Ply = G(x,r)] < 1, and soe-generation for the
1 1 1 messagea = 1111 will only occur ife < 0.6.
Figure 6:y1 = G(x,r1). This implies thak = 1111 belongs to the sbty\M{, with

pY(r) = 1. Any messages transmitted are disregarded

) ) since the threshold is set too high.
Now considel, = G(x,r2), whererp = 0101. In this case,

the crossover probability is 1 if a 0 is transmitted, andAlso, x= 1111 belongs to the s#55, andp®53(I") = 1.

0 if a 1 is transmitted. Since there are no zeroes in tWéth the lower thresholds belongs to the set of messages
original message, we still ggs = 1111. The diagram in that can be perfectly transmitted. This is true for any
Figure 7 makes this clear. that is less than 0.6.

0 As an aside, note that if we require the output mes-
0 0 sage to be 1100 (or even any of the other possible mes-
sages: 1010,1001,0110,0101,0011), thpn= G(x,r)] =

L 0, since these messages cannot be generated from the
x=1111 y2=1111 given message based on the noise sequences available.
0 - . .
1 1 We can carry out a similar analysis for each of the possi-

1 ble messages listed previously. These results are summa-
rized in Table 2, along with the probability that the output
message is the input message itself. The table helps fully
explain the set structures illustrated in Figure 10, for
With y3 = G(x,r3), whererz = 1010, we have a crossoveralues of 1, 0.55, and 0. Sin&x = G(x,r)] = 0.6 for
probability of 0 if a 0 is transmitted, but itis a 1 if a 1 is= 1111, and (& for all other messages, we have that for
transmitted. Thus all the ones in the original message ary e < 0.5, Mo = M, and sgo*(I") = 0. The figure also
transformed, and we ggt = 0000 as indicated in Fig-illustrates the results of Propositions 8 and 9.

ure 8. By the syntax defined earlier, this outcome is et
considered to be a valid message.

Figure 7:y, = G(X,r2).

s apparent that there is a noise sequence in the set of re-
sources{1010}, such that the transmitted output is never
a syntactically correct message, i.e., a string of zeroes is

0 ! 0 always produced. Consequently, the it Ms is never
0 empty in this example. Now in most communication sys-
tems employed today, the converse is true, since decoders
x=1111 ys = 0000 serve to decode the received string into the closest pos-
1 sible message that is syntactically correct. As a result,
1 1 IMo\M3| is reduced as much as possible.
0

Lastly, there is also a resourc€l001}, such that the
transmitted output is always syntactically correct, and in
deed, the original input itself. Hence if we impose the re-
Lastly, forys = G(x,r4), wherers = 0110, we have a sim-quirement thaP[x = G(x,r)] be high, i.e.€ ~ 1, then we
ilar result. Here, the crossover probabilities are both dre necessarily imposing a condition on the binary com-
and as a result, both inputs of 0 and 1 are switched. Wieinication channel that it be close to identity. This condi-
havey, = 0000 (Figure 9). tion can only be achieved with. In fact, this result cor-

Figure 8:y3 = G(x,r3).



Table 2: Message Outputs for Various Noise Sequences
y1=G(xr1) Y2=G(xr2) Yyz=G(xr3) Yys=G(xra) Plx=G(xr)]

x=1111 1111 1111 0000 0000 &
x=1100 1100 1111 0000 0011 .2
x=1010 1010 1111 0000 0101 .2
x=1001 1001 1111 0000 0110 .2
x=0110 0110 1111 0000 1001 .2
x=0101 0101 1111 0000 1010 54
x=0011 0011 1111 0000 1100 .2
roborates Corollary 5, because we now have the only po$fspringa priori as follows:
sible singleton resource such tigtt= 0. Thus there are
only two ways to induce a rank of 0 for this example: 1) X2 = G(Xg,r)
reduceg, at the price of low-probability results; or 2) use a x3 = G(xq,r2)
specific singleton resource to yield a high-probability-out _
o - ) Xa = G(xq,r3)
come, but this is unrealistic because one cannot typically
specify noise samples. This concludes the example. X = G(x,ri)
X6 = G(xg,r2)
Specifying a machine iM¢ requires an amount of infor- X7 = G(xs,r1)
mationt?, and this information threshold is given by: xs = G(Xa,r1)
. Mol . X9 = G(xs,r1)
i = logz ‘Mfo‘ for |Moo| 7& 0 4) X190 = G(X5,X9)
= oofor |[M{|=0 (5) xuu = G(Xe;X10)
12 = G(Xe,X11)
for a particulare. But what if e-replication or ane- x13 = G(x7,X12)
generation cycle requires machines of lower-rank to be xia = G(x7,x13)
utilized as a resource? For instance, a look back at the pre- _ G ’
vious example shows that acceptable messages and noise 15 = Glxa,x14)
samples could both be specified by identical syntax, and x16 = G(Xs,X15)
indeedR C M. Thus there were messages that also dou- x1 = G(Xg,X16)-

bled as possible noise samples too, and it is conceivable
that machines can make use of other lower-rank machines
in order to propagate. Then the question arises: how much
information would be required to specify each of theddtilizing the Generation Analysis Algorithm in [3], the

lower-rank machines? generation sets are obtained as indicated in Figure 12,
where:
To answer, consider that we have demonstrated a strong 1
likeness between Probabilistic Generation Theory and In- Mo\Mi = {Xe,X10,X11, X12, X13, X14, X15, X6}
formation Theory. It would therefore serve to make use M%\le = {Xs,Xe,X7,Xs}
of establisheq res_ults in Infc_)rmgtion Theory, and i(;ieptify MIME = {x2,x3, %}
a cor.respondlng interpretation &reproduction. This is M} — {x)and
best illustrated with another example.
pi(r) = 3.

Example 2. A Strict Generation System

This contrived system is thus dependent on lower-rank
Suppose we are given the strict generation system in Rigachines for the replication af. In accordance with the
ure 11, where we know the complete list of parents afatm of 7, we can also write(x € M#), the information
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Figure 11: Generation Diagram for Example 2.

Mo = {110010101001,01100101

{0000}

(b) € =0.55;p%%5(r) =1

Mo ={1111110010101001 01100101,
{0011} Figure 12: Generation set structure of Example 2.

We can calculate these quantities to be:

M .
= Iogz% = logy16 = 4 bits,
{0000} IMZ|
M .
(c) £<05;p5(M) =0 1(xe M%) = |092]|M(1)| = 2 hits,
2
Mo .
Figure 10: Thee-generation set structure of the systemin ~ [(XEMi) = |092’|Mll =1 bit,
Example 1. Ml
I(xeMd) = Iog2’|M(l’| = 0 bits,
0
of a machine belonging ol as and so with a four bit code we have that:
(xe ME) — | |Mo| ©)  machines irM} have four free bits in their code;
1(x € Mf) =log, :
| |ME| e machines inM1 have three free bits in their code,

10



e.g., their four bit code starts with a 1; Therefore, the Rank Information satisfies

e machines M have two free bits in their code, e.g., L(XE ME\ME. ;) = —logoTE. 0 < i
= b1, 0< 1 < p. 12
their four bit code starts with a 11, ( M) @7 P (12

e machines ir1\/|31 have no free bits in their code. i'I:e Rank Entropyof the probabilistic generation system

This implies thak; = 1111, and so the remaining bit com- . p
binations inM3 are Hr = —i;rqflogznf. (13)
{110011101101}; Making use of Information Theory, the capacity of a

memoryless channel is the maximum of the mutual infor-
mation over all the possible input probabilities. By con-
{10001001,10101011}; struction, the equivalent here amounts to taking the maxi-
mum of the Rank Information, with the result that the re-
and the remaining bit combinations Mo are those not productive capacity of a probabilistic generation process
already specified. is 7¢, the von Neumann information threshold. This result

Upon closer examination, it is evident tHdb\M?} spec- makes it clear that there is only a certain amount of in-
ifies an extra bit (and there are only 3 free), since tffrmation required to completely specify a machine, and
bit combinations allowed have to start with a 0. SimWwhen this maximum is reached during self-reproduction,
larly, M}\M} specifies an extra bit (with only 2 free), bethe von Neumann system rank is achieved.

cause the bit combinations allowed have to start with Mk can also use Shannon’s channel coding theorem

1 l e . . . v L}

MZ_\M3 specifies more_than 2 b|ts_, smcg_the bit Comq}_\'/hich states that the transfer rate of a code (in number

nations have to start with 11, and in addition, the comiz sy mhols per second) is less than or equal to the channel

nation 1111 is disallowed. Let us introduce the notion egpacity divided by the entropy of the source. We have a
Rank Informatiopand define it as follows: similar notion here, i.e., the reproduction rate (in syrsbol

- ’Mie\Mia-l of generation code per generationy,, is constrained in
1(xe MP\M7,,) = _IOQZW' (7) the manner:

the remaining bit combinations M} are

né < T—'g (14)
Checking with the example to see what this gives us, ~ HE

1 | 8 bi The quantity on the right in the above equation is the von
[(x€Mo\Mp) = - 00276 = 1bi, Neumann complexity threshold¢ generalizing that in
4 , [3]. Full transfer of complexity implies that the rate of
I(xe M{\M3) = —logz-—— = 2 bits o : :
1\V2 16 ' self-reproduction is at a maximum, and the offspring has
Toaal 3 ] the maximum amount of information needed to achieve
1(xe Mz\Mz) = —l0gz7¢ > 2 bits, the von Neumann system rank.
1
I(xeM}) = —logy— = 4 bits,
( 3 g216 4 APPLICATION TOLUNAR ROBOTIC COLONIES
as desired.

In our efforts to develop self-reproduction as a cost-
We can generalize this example to any generation systeffective solution for the establishment of robotic out-
that is specified completely. Now = G(x,r), proba- posts, we are planning a physical generation system that
bilistic r implies thaty, and henceo®(y) are also proba- simulates the operation of a growing robot colony. It is
bilistic. In fact, since we are aware of the entire generatianticipated that, in order to create the International ltuna
system beforehand, we can calculate the probability of tRebotic Village, the advanced robots provided by the vari-
rank of an offspring as: ous co-operating space agencies will be multi-discipiinar
in nature, with each robot capable of performing assorted

— & &
= PxeMAM:] (8) tasks such as mining for lunar resources as well as build-
|MiE M, 4 for 0< i 9 ing any necessary infrastructure. These robots will be
Mo| ' oro=tr<p. ©) structurally different from one another and, althoughrthei
nﬁ — Plxe Mf)] (10) furllcuoni w:jll n_ec_:essz?rlly rt])e symg)lo;lcr,] |nd|\1|duaIsTvr\]/|II
M| only make decisions for the good of the colony. us,

- _ (11) self-reproduction will take place in order to benefit the
|Mo| group as whole.

11



Using off-the-shelf components, the planned generation
system is a simplified version of a robotic village, initjall
consisting of two robots. The first robot has a controller
on board a wheeled chassis, and is equipped with a grip-
per. The second robot also has a controller on board a
chassis, but this robot slides along a track, has a storage Robot 2 Resources
receptacle, and does not have a gripper. Both robots are
equipped with the necessary sensors to perceive the envi-
ronment. Figure 13 depicts what these robots would look

like. Materials to
be Transferred

Connecto —— Robot 2
Controllef | .
Gripper
Resources
(a) Robot 1.
Track
Controller
Receptacle ‘
/ Connector

Chassis Slot for Track Drop-off Location

(b) Robot 2.

Figure 14: Proposed colony layout.
Figure 13: Schematic representation of the robots in the
generation system.

In this system,
The objective of the colony is to transfer a number of ma-

terials from a location near the middle of the track to a M X1, %}
location at one of the ends of the track. Each piece of ma- R — ’
terial is gripped by Robot 1 and placed in the receptacle = {rura},

of Robot 2, which then transports it to the end of the track

and drops it there (Figure 14). Rather than have the robots

co-operatively determine whether it is advantageous to ¥41€réxi = Robot 1x; = Robot 2r; = unconnected Robot
pand the colony and pursue self-reproduction, we spe ontroller-chassis combo, angl= unconnected Robot

that each robot self-reproduce after a period of time. THgontroller-chassis combo. The generation functions for
eliminates any decision-making complications. each robot involve the manner in which the controller is

) ) connected to the chassis; we hawe= G(xi,r1), and
Robot 1 self-reproduces by moving a short distance awgy_ G(x,,r,). If x; operates o or if x, operates on

from the work site to where a number of Robot 1-typg  then any attempt at self-reproduction will not produce
controllers and chassis are located. It uses the grippeqithachine. This is because proper electrical connection
connecta controller to its chassis, thereby activating/a ngf the desired robot will not have been achieved. ~For the
Robot 1 (Figure 15(a)). generation system specified above, we are able to apply
Robot 2 begins self-reproduction by moving to the end Bfobabilistic Generation Theory and evaluate the follow-
the track opposite from the drop-off location. Here, theted parameters: the von Neumann thresholds of rank, in-
are a number of unconnected controllers on board Rof@imation and complexity; channel capacity; reproduction
2-type chassis. Robot 2 nudges the electrical conned®@ie; and the Rank Information and Rank Entropy of the
on the controller when it arrives at this location, thereteneration sets. Full details and results on the above gen-
activating a new Robot 2 (Figure 15(b)). eration system will be presented in a future paper.

12
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In addition to the lunar robotic application described in
Section 4, current research efforts are also focused on the
development of a seed identification algorithm to specify
the minimal size for the seed of a viable robotic colony.

! Contacts

S
Gripper
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(b) Robot 2 pushes contacts into position.

Figure 15: Generation functions for the two robots.
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5 CONCLUSIONS

We conclude with a list of the major highlights of this
paper. [4]

e Probabilistic Generation Theory is a generalization
of the results in [3]. It is a simple yet comprehensive
method that encompasses reproduction while n
being capable of dealing with the probabilistic selec-
tion of resources. The existence of a von Neumann
rank threshold below which degeneracy always oc-
curs is demonstrated. 6

e A communication system may be viewed as a gener-
ation system and vice-versa. If we examine a gen
ation system with the established results of Informa-
tion Theory, we find that the von Neumann threshold
of Information is in fact the channel capacity of the
probabilistic generation process. It is only when this
maximum amount of information is specified that
the von Neumann system rank is achieved, and, re
alistically, no more information is required to com-
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APPENDIX

Prbposition 1

pletely specify an offspring machine. Furthermorgroof. The proof is by induction.

the reproduction rate proceeds at or below the von
Neumann threshold of complexity per generation,

Ao initialize the induction, note that e M thenx € Mg

and the full transfer of complexity implies that th&Y Definition 2. Thereforéo 2 M.
offspring has the maximum amount of informatioloreover, ifx € M§ then there existy € M{ such that

needed to achieve the von Neumann system rank.p[y: G(x,r)] > €

13



SinceMg D M£, theny € Mo. This implies thatx € M{, Suppose however, that the rank is infinite. Then the
which must mean thatl; > M5. sets(l.\/l(.)\.Mf), (Mf\Mg), (MfM‘\Mﬁle) are mutuj

ally disjoint. Again, each of these sets has to contain at
least one element by Definition 2, so each of their respec-

tive cardinalities is lower-bounded by one. Now

For the induction hypothesis, assuMg ; © M.

To prove by induction, ik € Mg, then there existge Mg

uch thaPly =Gbn) == M 2 (Mo\ME)U (ME\ME) U+ (M \M ) (16)

SinceM_1 2 M, theny € My_1. This implies thatx €

Mg, which must mean thafif O M, ;. and taking the cardinalities of both sides again gives the

contradictionM| > M|+ 1.

Proposition 2 Therefore the rank cannot be infinite if there are a finite
number of machines. The rank has to be less than or equal

Proof. The proof is by contradiction. to the cardinality of the machine set. O

Supposél y € Mf for whichPly = G(x,r)] > €, € > 0. Proposition 5

Then, by definition oM¢, ;, x € M£, ;. But this contradicts Proof. The proof is by contradiction. Assume that any
the hypothesis thate MF\M¢, ;. one ofx ¢ ME. Without loss of generality, let, = x3.
By Proposition 2% (xz) < p%(x1), p*(xa) < P*(X2), ...,

There;‘ore, ifx € MF\ME,; andPly = G(x,r)] > ¢, then 0% (%) < PE(¥n_1), and therefor@® (x;) < p(x,). Then
y ¢ M. L' pe(x;) < pf(x), which is a contradiction. Hence 3,

. X2,. .., X form ane-generation cycle of order, thenx; €
Proposition 3 ME , where 1< i < n, 0
Proof. The proof is by induction. Proposition 6

To initialize the induction, the hypothesis states tit="Proof. We know thatM§ = Mg, ; = M¢.
ME . Thus forj =i+1, M = ME.

i+ thustory =144, My =N If x e M§ thenx € M5, ;.
For the induction hypothesis, assume thtt= M’ ; =

CME = ME By the definition ofM?, ,, there existy € M§ such that
cee = jfl = ] .

p+1’
Ply=G(xr)] > €.
To prove by induction, lex € M{. Then by the definition Sincey € ME theny € M 0

£ . . £ p 00"
of M§, xis g-capable of producing € Mf_;.
Proposition 7

By the induction hypothesisvif_; = Mf. This implies
thaty is alsoe Mf, and hencex € M, ;. Thus,Mf, ; 2
M¥. Since the hypothesis states tyat Mf,fl\M;_f; can bee-

This must mean thatgenerated, there existe Mg such thaPly; = G(x,r)] >
€.

Proof. The proof is by contradiction.

But by Proposition 1Mf ) Mf+1-
ME,; = ME = M.
LetRy £ {r1:y1 = G(x,r1)}.

ThenR; # © becaus®[y; = G(x,r)] > € > 0.5.

For the same, and since is finite, Proposition 6 implies
that there existg, € Mg such thaty, can bes-generated.

Thus ifME = Mf, 1, then for allj > i, M{ = M.

Proposition 4

Proof. Let pé(I') = p be finite. ThenM can be decom-
posed as the union of mutually disjoint sets:
LetRy £ {rp:yo = G(x,r2)}.

ThenR; # © becausd[y, = G(x,r)] > £ > 0.5.

The set§Mo\M;), (Mf\MS), ..., (M{_;\Mg) all contain \We haveR; C R R, CR; and(RiUR) CR.
at least one element (by the nature of Definition 2), so e
their respective cardinalities are lower-bounded by ordNcey1 € Mg

The cardinality oM is lower-bounded by zero. Now if Ply; = G(x,r1)] = P[Ry] > €, then fory, # yi,

Taking the cardinalities of both sides of (15) yield5 Y2 = C(Xr2)] = P[Re] should be< 1—¢.
pE(M) < |M| for finite p&(T"). IfRi=R, e<P[R <1-¢.

M = (Mo\M{)U(M{\M3)U---U(Mg_1\Mg)UMg (15)

_1\Mj andy, € M5, theny; # y,.
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But then this means that© € < 0.5, which is a contra-

diction.

ThereforeR; andR; are distinct and non-empty. Thus th

resource se, must contain at least two elements. OJ
Proposition 8

Proof. The proof is by induction.

That is, a maching; € M,ﬁ‘ﬁl is either able te;-replicate
or be a part of ag;-generation cycle. The machine rank

gf X1 at&g is pFL(xy) = Pg.

Now consider the probabilistic generation system to be
operating at somey, whereg; < &.

Let psz(r) = p£2-
That is, a machine, € M,§§2 is either able ta,-replicate

To initialize the induction, ifx S M]a:l, then there exists or be a part of ar&z_generation Cyc'e_

y1 € M§! such thaP[y; = G(x,r)] > &.

Alternatively, if x € M7?, then there existg, € Mg? such
thatPly> = G(x,r)] > &.

But Mgt = M§2 = Mo.

Sinceg; < &, and substitutingWlst for M§2 in the above,
we can amend the last if-statement to read:

If x € M;?, then there existy, € Mg! such thatPly, =
G(x,r)] > €1.

This means that € M;. Hence Ms* D M2,

Now if x € M5!, then there existy; € Mi! such that
Py =G(x.r)] > &1.

Alternatively, if x € M2, then there existg, € M;? such
thatP[y> = G(x,r)] > &.

But M{* D M72.

Sincee; < &, and substituting;* for M$? in the above,
we can amend the last if-statement to read:

If x € M52, then there existy, € M;* such thatPly, =
G(x,r)] > €.

This means that € M3'. Hence M3 D M32.

For the induction hypothesis, assuMg O M;2.

To prove by induction, ik € Mg,

M. such thaPly; = G(x,r)] > &1.

then there existg; €

If x € M, then there existgz € M2 such thatP[y, =
G(x,r)] > &.
Using the induction hypothesisl* O M2

Sincee; < &, and substituting,* for M2 in the above,
we can amend the last if-statement to read:

If x € M, then there existgz € M* such thatP[y, =
G(x,r)] > €1.

This means that € Mt ;. Hence Mg, D M2 . O

Proposition 9

By Proposition 8Mg. O M2 .

In other wordsx, € Mg2 = X € Mgl , andx; is able
to & -replicate as well (or be a part of am-generation
cycle).

Taking the machine rank of at&;, we getp®(x2) = ps,.

But for xp to be able toe;-replicate (or be a part of an
£1-generation cycle), that must mean tpat < pe,.

= p&(r) < p2(T"). O
Proposition 10

Proof. From Proposition 9, we know that < &, implies
that p®1(I") < p%(I'), that is, theM? sets either become
bigger or stay the same a@sgoes to 0. Also, with Free
Generationg = 0 implies thatp®(I") = 0, that is,Mf =
Mo whene = 0. Therefore, the following statement is
true:

For ally > 0, there exist®(y) such that|¢|| < 6 implies
that|[p®(M)[| <y.

This is equivalent to saying that asgoes to OMZ also
goes toMp. O]

Proof. Consider the probabilistic generation system to be

operating at somey.

Let p(T) = g,
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