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ABSTRACT

This paper examines the information requirement of a
self-reproducing system in a lunar setting. Prior work is
extended to allow self-reproducing entities the ability to
select required resources in a probabilistic manner, lead-
ing to the notion of probabilistic reproduction. The quan-
titative requirement for probabilistic production of a non-
degenerate offspring, i.e., an offspring with the same re-
productive capability as the progenitor, is derived. The
existence of a von Neumann rank threshold below which
degeneracy always occurs is demonstrated.

The parallels between generation and communication are
studied in some detail, and illustrated with examples. Uti-
lizing the established results of Information Theory, it is
shown that the channel capacity of a probabilistic gener-
ation system is the von Neumann information threshold,
and the maximum reproduction rate of the system is the
von Neumann complexity threshold.

The paper also proposes a simplified model of a lunar
robotic colony to which the theoretical results are appli-
cable.

1 INTRODUCTION

Artificially-created self-reproducing machines have long
captivated the imagination of mankind. Scientific re-
search conducted to realize the dream of self-reproduction

has shown much promise in recent years, with the poten-
tial to significantly impact such diverse areas as space col-
onization, bioengineering, evolutionary software and au-
tonomous manufacturing. This paper investigates one of
the feasibility requirements of self-reproducing entities,
and is set within the context of a lunar robotic colony.

1.1 Motivation

Current phased approaches to Martian exploration see the
development of an enduring robotic presence on the Moon
in the next five years. An International Lunar Robotic Vil-
lage that will precede the establishment of a permanent
human outpost on the Moon has also been proposed for
2014. This colony of advanced robots from the various
co-operating space agencies would be designed to go be-
yond tele-presence from Earth, by sharing facilities that
take advantage of available lunar resources, conducting
life support experiments, and building the infrastructure
necessary for human-robot Moon and Mars exploration.
Recent space-exploration roadmaps suggest that individ-
ual countries will deploy these advanced robots on an as-
needed basis to expand the size of the colony.

How much more efficient then, would it be to have robots
endowed with the capacity for self-reproduction. These
machines would be able to utilize available resources on-
site to enlarge their numbers when deemed necessary for
a given task. Such technology is not dependent on ei-
ther the launch capabilities or the fiscal constraints sur-
rounding the multiple launches of robots required for the
colony, and therefore may provide a highly cost-effective
solution.

In general, robots require mass, energy, and information
or knowledge in order to perform their assigned tasks.
While a seed robot endowed with some start-up resources
is needed to initiate a colony, it is not feasible to deploy
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the robot with all the mass and energy necessary for self-
reproduction, nor is it expected that the first seed robot ar-
rives with all the knowledge it requires for survival, since
it can learn from its actions within the environment. Ac-
cordingly, there are bounds on the minimum requirements
of information, mass, and energy for the seed of a self-
reproducing system. This work focuses solely on the in-
formation that is a fundamental requirement for the seed.

1.2 Background

Before proceeding any further, we should first state
what is meant by the following terms that will be used
throughout the paper: reproduction, replication, self-
reproduction, and self-replication. For a historical per-
spective of the first two terms, the reader is referred to
Freitas’ excellent discussion on the subject in [2]. We
consider reproduction in biological systems to imply the
capacity for genetic mutations and the potential for evolu-
tion. Thus from an information standpoint, reproduction
involves a change to the DNA code during the generation
of progeny. Likewise, we will takereproductionin an
artificial generation system to imply a change in the in-
formation specifications of an offspring. We reserve the
term replication for progeny that have identical informa-
tion content to that of the progenitor.Self-reproducingand
self-replicatingwill be used to refer to those entities that
perform the information equivalent of asexual reproduc-
tion or mitosis, i.e., the entities can reproduce or replicate
based on the information specifications of only one pro-
genitor.

The field of self-reproduction owes much to the efforts
of John von Neumann [7], whose work on the theory of
automata in the 1940s and 1950s inspired extensive re-
search into the simulation and implementation of cellu-
lar automata, computer programs, kinematic machines,
molecular machines, and even robotic colonies. A de-
tailed overview of the research activities in the field is
presented in [2, 6].

In a series of lectures in the 1940s [7], John von Neu-
mann specified four functional requirements for reproduc-
tion: 1) a description of the progenitor; 2) a set of self-
reproduction instructions; 3) a transfer of that description
from the progenitor to its offspring; and, 4) an input to
the process to allow for variation. He also postulated the
existence of a threshold of complexity below which any
attempt at self-reproduction was doomed to degeneracy.
However, he did not define either complexity or degener-
acy, nor did he go on to compute the threshold’s value. An
extensive literature survey in [4] indicates that no one had
published an evaluation of this threshold in the following

60 years. Recently, [3] developed a novel theory of gener-
ation that is able to compute this von Neumann threshold,
with results that yield a necessary and sufficient condition
for non-degeneracy in self-reproduction.

1.3 Contribution

This work extends the results of [3] by proposing a prob-
abilistic version of Generation Theory. This theory is dif-
ferent from that in [1], where a probabilistic measure of
self-replicability is computed by comparing the probabil-
ity of a machine spontaneously appearing in the environ-
ment to the probability that a new machine would appear,
given that one already existed.

The new theory allows us to explicitly quantify the fun-
damental information requirement for self-reproduction.
This requirement is imposed when probabilistically se-
lecting from available resources to ensure that non-
degenerate offspring are produced with high probability.
We go on to demonstrate how similar reproduction and
communication are to each other, and provide illustra-
tive examples. Using established results from Informa-
tion Theory, we develop the channel capacity and rate of
a reproduction process, and relate it to quantities that have
been previously defined in [3]: the von Neumann thresh-
olds of information and complexity respectively.

1.4 Paper Layout

Section 2 presents the tenets of Probabilistic Generation
Theory, Section 3 documents the parallels that exist with
Information Theory, and Section 4 details a plan for a sim-
plified model of a self-reproducing lunar robotic colony.

2 A PROBABILISTIC THEORY OFGENERATION

The theory advanced here formalizes self-reproduction by
“machines,” a term describing any entity that is capable of
producing an offspring regardless of its physical nature.
Thus a robot, a bacterium, or even a piece of software
code is considered to be a machine in this theory if they
can each produce another robot, bacterium or some lines
of code respectively. These machines require resources
to self-reproduce, and each resource is chosen with some
prior probability. The selected resource is then manipu-
lated by the parent machine via an embedded generation
action to produce an outcome, which itself may or may
not be a machine. Thus we can state the following:

Definition 1. A Probabilistic Generation Systemis a
quintupleΓ = (U,M,R,P,G), where

• U is auniversal setthat contains machines, resources
and outcomes of attempts at self-reproduction;

2



• M ⊆U is aset of machinesin the context described;

• R⊆ U is a set of resourcesthat can be utilized for
self-reproduction;

• P is a probability mass function (pmf) onR, that is,
R→ R with P[r] ∈ [0,1] and∑i P[r i ] = 1;

• G : M×R→U is a generation function that maps a
machine and a resource into an outcome in the uni-
versal set, and not necessarily in the set of machines.

U

M R

Figure 1: Pictorial representation of Definition 1.

Furthermore, it is possible thatM ∩ R 6= ⊘, and also
M∪R 6= U , as illustrated in Figure 1. The former implies
that machines can belong to the set of resources, and the
latter states that outcomes of attempts at generation may
be neither machines nor resources.

One can define an indicator function,I , over a predicate,
p, such that:

I(p) = 1 i f p = True

I(p) = 0 i f p = False.

Thus, the probability of a machinex∈ M processing a re-
sourcer ∈R to generate an outcomey∈U may be written
as:

P[y = G(x, r)] = ∑
r∈R

I(y = G(x, r)) ·P[r]. (1)

If, in (1), P[y = G(x, r)] > ε, whereε > 0, then we say
that “x is ε-capable of generatingy,” and we call the pro-
cessε-reproduction. If we haveP[x = G(x, r)] > ε in (1),
whereε > 0, then we say that “x is ε-capable of generat-
ing itself,” and we call the processε-replication.

The four functional requirements for reproduction stipu-
lated by von Neumann are captured above. There is a
description (the parent,x), a set of self-reproduction in-
structions (the generation function,G), a transfer of that
description (1), and an input to the process (the resource,
r).

Of course, if we setε = 0, then we allow every machine
to ε-reproduce no matter what resource is selected. This
is termedFree Generation. If ε = 1, then the determinis-
tic theory of generation proposed in [3] is recovered, and
only one resource is required to generate the desired off-
spring with probability 1. This is calledStrict Generation
or Unity Generation.

Definition 2. TheGeneration Setsin a probabilistic gen-
eration system are described as:

• M0 = M, the set of all machines;

• Mε
i+1, the set of all machines that areε-capable of

producing a machine ofMε
i , ∀i ≥ 0. That is, forx∈

Mε
i+1, ∃ y∈ Mε

i such thatP[y = G(x, r)] > ε.

These sets are nested as indicated by the following propo-
sition and Figure 2.

Proposition 1. M0 ⊇Mε
1 ⊇Mε

2 ⊇ ·· · ⊇Mε
i ⊇Mε

i+1 ⊇ ·· · .

Proof. See Appendix.

M0
Mε

1

Mε
2

Mε
∞

Figure 2: The nesting arrangement of theε-generation
sets.

As will be shown later in this section, the innermost gen-
eration set is important for self-reproduction. This set can
be defined as:

Mε
∞ =

∞
⋂

i=0

Mε
i . (2)

Proposition 2. If x ∈ Mε
i \Mε

i+1 and P[y = G(x, r)] > ε,
ε > 0, then y/∈ Mε

i .

Proof. See Appendix.
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The meaning of this proposition is that generation always
proceeds outwards.

Corollary 1. If x ∈ Mε
i \Mε

i+1, then any sequence ofε-
generation starting from x will produce an outcome y/∈ M
in at most i+1 steps.

Corollary 2. If x ∈ Mε
i \Mε

i+1, then it cannotε-replicate.

If replication is desired, Proposition 2 and its corollaries
place a requirement on the location of a machine within
the sets of a probabilistic generation sytem. To further
ascertain the nature of this requirement, we develop the
notion of rank, as well as a few other propositions.

Definition 3. The rank of a probabilistic generation sys-
tem, ρε(Γ), whereΓ = (U,M,R,P,G) with generation sets
Mε

i , i ≥ 0, is the smallest integerρ such thatMε
ρ = Mε

ρ+1.
If ∀i,Mε

i 6= Mε
i+1, then the generation system has infinite

rank.

Proposition 3. If Mε
i = Mε

i+1 for a probabilistic genera-
tion system with finite rankρε(Γ), then∀ j ≥ i, we have
Mε

j = Mε
i .

Proof. See Appendix.

Hence, the nesting of the generation sets stop at the inte-
ger ρ for a probabilistic generation system of finite rank
ρ . All generation sets of higher order (up to and includ-
ing Mε

∞) are equal. The next proposition indicates that if
a probabilistic generation system has a finite number of
machines, then its rank will always be finite.

Proposition 4. For a probabilistic generation systemΓ =
(U,M,R,P,G) whereρε(Γ) is finite, a finite number of
machines,|M|, results inρε(Γ) ≤ |M|.

Proof. See Appendix.

If ρε(Γ) = ∞, then this implies that|M| = ∞. However,
|M| = ∞ doesnot necessarily implyρε(Γ) = ∞. It is pos-
sible in the latter case forρε(Γ) to be finite, including
zero.

Having defined the rank of a probabilistic generation sys-
tem, we can now go on to explain the rank of a machine.

Definition 4. The rank of a machine, ρε(x), in a prob-
abilistic generation systemΓ = (U,M,R,P,G) with gen-
eration setsMε

i , i ≥ 0, andρε(Γ) = ρ , is equal toi if
x∈ Mε

i \Mε
i+1 (“deficient generation rank”), or is equal to

ρ if x∈
⋂∞

i=0Mε
i (“full generation rank”).

This definition facilitates a key discussion on the
generation-set location of a parent machine capable ofε-
replication. We first consider the more general case of
ε-generation cycles, defined as follows.

Definition 5. An ε-generation cycleis a sequence ofε-
generations resulting in the production of a machine iden-
tical to itself aftern generations.

Proposition 5. If x1, x2,. . . , xn form anε-generation cycle
of order n, then xi ∈ Mε

∞, where1≤ i ≤ n.

Proof. See Appendix.

Corollary 3. If a machine, x, is capable ofε-replication
(an ε-generation cycle of order one) in a probabilistic
generation system, then x∈ Mε

∞.

We now show that thePrinciple of Degeneracystated
in [3] also holds true in the probabilistic version of the
theory. Having identified that machines capable ofε-
replication must belong toMε

∞, and that any exit fromMε
∞

is irreversible, we demonstrate that it is possible for off-
spring machines to belong toMε

∞ as long as their parents
do as well.

Proposition 6. Assume that a probabilistic generation
systemΓ = (U,M,R,P,G) has finite rankρε(Γ) = ρ , and
let x∈ Mε

∞. Then∃ y∈ Mε
∞ such that P[y = G(x, r)] > ε.

Proof. See Appendix.

Corollary 4. Assume that a probabilistic generation sys-
tem Γ = (U,M,R,P,G) has finite rankρε(Γ) = ρ , and
also has|Mε

∞| 6= 0 and |Mε
∞| < ∞. Then Mε

∞ contains at
least oneε-generation cycle of order at most|Mε

∞|.

Proposition 6 quantifies non-degenerateε-reproduction
and ε-replication. It corroborates von Neumann’s re-
marks, and indicates that there is a minimum threshold
beyond which a machine is able toε-generate an offspring
without a decrease in generation rank. We call this thevon
Neumann Rank Threshold, τr , and define

τε
r = ρε(Γ). (3)

We can also describe an interesting fact about the mini-
mum number of resource elements in a probabilistic gen-
eration system, given certain assumptions.

Proposition 7. Assume that a probabilistic generation
systemΓ = (U,M,R,P,G) has finite rankρε(Γ) = ρ , and
that a machine y1 ∈ Mε

ρ−1\Mε
ρ can beε-generated, where

0.5 < ε ≤ 1. Then the resource set, R, must contain at
least two elements.

Proof. See Appendix.

Corollary 5. If every machine can beε-generated in a
probabilistic generation systemΓ = (U,M,R,P,G), where
0.5 < ε ≤ 1, and the resource set is a singleton, then the
rank of the system,ρε(Γ), must be either0 or ∞.
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We now proceed to analyze the effects of changes inε on
the generation sets of the system.

Proposition 8. Given a probabilistic generation system
Γ = (U,M,R,P,G), if ε1 < ε2, then Mε1

i ⊇ Mε2
i , for all

i ≥ 0.

Proof. See Appendix.

Corollary 6. If x∈Mε1
i \Mε1

i+1, andε1 < ε2, thenρε1(x)≥
ρε2(x).

x

Mε1
i+1

Mε1
i−1

Mε1
i

(a) ρε1(x) = i

x

Mε2
i+1

Mε2
i−1

Mε2
i

(b) ρε2(x) = i −1

Figure 3: The effect of increasedε on machine rank.

Figure 3 illustrates Corollary 6.

It turns out that the rank of a machine is not the only thing
affected by a change inε. The rank of a probabilistic
generation system, and hence the von Neumann threshold,
also vary in the manner indicated below.

Proposition 9. Given a probabilistic generation system
Γ = (U,M,R,P,G), if ε1 < ε2, thenρε1(Γ) ≤ ρε2(Γ).

Proof. See Appendix.

This proposition makes intuitive sense. If the generation
sets become bigger with decreasingε, then it stands to
reason that more machines will be able toε-replicate, and
therefore,τε

r = ρε(Γ) must be correspondingly reduced.
In fact, an even stronger statement can be made.

Proposition 10. Given a probabilistic generation system
whereΓ = (U,M,R,P,G) with finite rankρε(Γ) = ρ , ε →
0 implies that Mε

∞ → M0.

Proof. See Appendix.

Having formalized probabilistic self-reproduction with
the above definitions and propositions, we now demon-
strate the applicability of the theory and its usefulness as
a tool for analysis.

3 THE INFORMATION THEORY ANALOGUE

The processes of generation and communication [5] dis-
play remarkable parallels; indeed, communication may be
viewed as the reproduction of a transmitted message at the
receiving end of a communication channel. Table 1 indi-
cates the full extent of these similarities.

To explain the parallels fully, consider the typical diagram
of a communication process [5] modified in accordance
with Table 1 as shown in Figure 4, in order to yield a cor-
responding diagram of a generation process.

The parent machine acts as the information source, pro-
ducing the instructions (a message) that will create an off-
spring. These instructions can be coded, just like DNA,
prior to the generation process (correspondingly, the mes-
sage can be encoded into a syntactically correct form prior
to transmission). There is a non-zero probability that
mutations may occur during reproduction (the message
may be corrupted by noise), and different resources (var-
ious noise samples) will produce different outcomes. If
the probability of producing a certain outcome exceeds a
threshold, then that outcome is produced.

Typically when we writey = G(x, r), we combine the in-
formation source and the transmitter intox, and the re-
ceiver and destination intoy, as depicted in Figure 4.

The next example depicts how probabilistic generation
theory may be successfully utilized in a binary communi-
cation channel, and also sheds some light on the changes
in the generation sets as a result of varyingε.

Example 1. Binary Communication Channel With Prob-
abilistically Selected Noise Sequences

Let M, the set of messages, be represented by a set of
syntactically correct binary sequences, where the syntax
is as follows: a length of 4 symbols; and the number of
ones in the sequence is even and greater than zero.
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INFORMATION
SOURCE

TRANSMITTER RECEIVER DESTINATION

NOISE
SOURCE

MESSAGE SIGNAL REC’D

SIGNAL

MESSAGE

(a) Typical communication system [5].

PARENT
MACHINE

ENCODER G DECODER OFFSPRING

RESOURCE

INSTRUC-

TIONS

(DNA)

CODE

REC’D

CODE

INSTRUC-

TIONS

(b) Expanded generation system.

PARENT
MACHINE

G OFFSPRING

RESOURCE

r

x y

(c) Typical generation system.

Figure 4: Schematic diagrams of communication and generation systems.
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Table 1: Comparison of the Probabilistic Generation Systemin Generation and Information Theories

Generation Theory Information Theory

U Universal set of machines, resources and out-
comes of attempts at self-reproduction

Universal set of representations of messages,
representations of noise samples, and outcomes
of attempts at communication

M Set of machines Set of syntactically correct representations of
messages

R Set of resources Set of representations of noise samples that,
when used in a communication channel, deter-
ministically alter a portion of the transmitted
message

P pmf on R (probability of selection) pmf on R (probability of selection)

G Generation function,G : M×R→U communication channel where the altering of a
message occurs deterministically based on the
probabilistic choice of noise sample,G : M ×
R→U

M0\Mε
1 Set of machines that, when attempting toε-

reproduce, create offspring that are never ma-
chines no matter which resource is selected

Set of syntactically correct messages that, when
transmitted, are interpreted as messages that
are never syntactically correct no matter which
noise sample is selected

Mε
i \Mε

i+1 Set of machines such that, for all sequences of
i + 1 resources, these machinesε-produce an
offspring that is not a machine at some genera-
tion in the sequence

Set of syntactically correct messages such that,
for all sequences ofi +1 noise samples, the re-
cursive transmission of these messages results
in an outcome that can never be interpreted as a
syntactically correct message at some commu-
nication in the sequence

Mε
∞ Set of machines such that there exists an in-

finitely long sequence of resources for which
all theε-offsprings are machines

Set of syntactically correct messages such that
there exists an infinitely long sequence of noise
samples for which all the transmitted messages
are syntactically correct

ε ε ∈ [0,1] ε = 0

Thus the set of acceptable messages is

{1111,1100,1010,1001,0110,0101,0011}.

Let R, the set of noise sequences, be represented by a set
of binary sequences with the following characteristics: a
length of 4 symbols; either the first bit or the second bit is
a one; and either the third bit or the fourth bit is a one.

Thus the set of noise sequences is

{1001,0101,1010,0110}.

Let P be a pmf onR, and taken for this example to be

{0.5,0.1,0.15,0.25}.

Let G be a binary communication channel as indicated in
Figure 5. This channel has crossover probabilities given
by the second and third bits of the selected noise resource,
and correct-transmission probabilities given by the first
and fourth bits of the selected noise resource.

bit 2

bit 3

0

1

0

1

bit 1

bit 4
Figure 5: Binary communication channel representingG
in Example 1.
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Suppose that the messagex = 1111 is given, and that the
output message (orε-offspring) desired isy = 1111, with
ε = 1.

Considery1 = G(x, r1), wherer1 = 1001. As shown in the
diagram of Figure 6, the crossover probabilities are both
0, and as a result,y1 = 1111.

0

0

0

1

0

1

x = 1111 y1 = 1111

1

1
Figure 6:y1 = G(x, r1).

Now considery2 = G(x, r2), wherer2 = 0101. In this case,
the crossover probability is 1 if a 0 is transmitted, and a
0 if a 1 is transmitted. Since there are no zeroes in the
original message, we still gety2 = 1111. The diagram in
Figure 7 makes this clear.

1

0

0

1

0

1

x = 1111 y2 = 1111

0

1
Figure 7:y2 = G(x, r2).

With y3 = G(x, r3), wherer3 = 1010, we have a crossover
probability of 0 if a 0 is transmitted, but it is a 1 if a 1 is
transmitted. Thus all the ones in the original message are
transformed, and we gety3 = 0000 as indicated in Fig-
ure 8. By the syntax defined earlier, this outcome is not
considered to be a valid message.

0

1

0

1

0

1

x = 1111 y3 = 0000

1

0
Figure 8:y3 = G(x, r3).

Lastly, fory4 = G(x, r4), wherer4 = 0110, we have a sim-
ilar result. Here, the crossover probabilities are both 1,
and as a result, both inputs of 0 and 1 are switched. We
havey4 = 0000 (Figure 9).

1

1

0

1

0

1

x = 1111 y4 = 0000

0

0
Figure 9:y4 = G(x, r4).

Thus we can calculateP[y= G(x, r)] = 1×0.5+1×0.1+
0×0.15+0×0.25= 0.6.

Clearly, P[y = G(x, r)] < 1, and soε-generation for the
messagex = 1111 will only occur ifε < 0.6.

This implies thatx= 1111 belongs to the setM0\M1
1, with

ρ1(Γ) = 1. Any messages transmitted are disregarded
since the threshold is set too high.

Also, x= 1111 belongs to the setM0.55
1 , andρ0.55(Γ) = 1.

With the lower threshold,x belongs to the set of messages
that can be perfectly transmitted. This is true for anyε
that is less than 0.6.

As an aside, note that if we require the output mes-
sage to be 1100 (or even any of the other possible mes-
sages: 1010,1001,0110,0101,0011), thenP[y= G(x, r)] =
0, since these messages cannot be generated from the
given message based on the noise sequences available.

We can carry out a similar analysis for each of the possi-
ble messages listed previously. These results are summa-
rized in Table 2, along with the probability that the output
message is the input message itself. The table helps fully
explain the set structures illustrated in Figure 10, forε
values of 1, 0.55, and 0. SinceP[x = G(x, r)] = 0.6 for
x = 1111, and 0.5 for all other messages, we have that for
anyε ≤ 0.5, M0 = Mε

∞, and soρε(Γ) = 0. The figure also
illustrates the results of Propositions 8 and 9.

It is apparent that there is a noise sequence in the set of re-
sources,{1010}, such that the transmitted output is never
a syntactically correct message, i.e., a string of zeroes is
always produced. Consequently, the setM0\Mε

1 is never
empty in this example. Now in most communication sys-
tems employed today, the converse is true, since decoders
serve to decode the received string into the closest pos-
sible message that is syntactically correct. As a result,
|M0\Mε

1 | is reduced as much as possible.

Lastly, there is also a resource,{1001}, such that the
transmitted output is always syntactically correct, and in-
deed, the original input itself. Hence if we impose the re-
quirement thatP[x = G(x, r)] be high, i.e.ε ≈ 1, then we
are necessarily imposing a condition on the binary com-
munication channel that it be close to identity. This condi-
tion can only be achieved withr1. In fact, this result cor-

8



Table 2: Message Outputs for Various Noise Sequences

y1 = G(x, r1) y2 = G(x, r2) y3 = G(x, r3) y4 = G(x, r4) P[x = G(x, r)]

x = 1111 1111 1111 0000 0000 0.6

x = 1100 1100 1111 0000 0011 0.5

x = 1010 1010 1111 0000 0101 0.5

x = 1001 1001 1111 0000 0110 0.5

x = 0110 0110 1111 0000 1001 0.5

x = 0101 0101 1111 0000 1010 0.5

x = 0011 0011 1111 0000 1100 0.5

roborates Corollary 5, because we now have the only pos-
sible singleton resource such thatτ1

r = 0. Thus there are
only two ways to induce a rank of 0 for this example: 1)
reduceε, at the price of low-probability results; or 2) use a
specific singleton resource to yield a high-probability out-
come, but this is unrealistic because one cannot typically
specify noise samples. This concludes the example.

Specifying a machine inMε
∞ requires an amount of infor-

mationτε
i , and this information threshold is given by:

τε
i = log2

|M0|

|Mε
∞|

for |Mε
∞| 6= 0 (4)

= ∞ for |Mε
∞| = 0 (5)

for a particularε. But what if ε-replication or anε-
generation cycle requires machines of lower-rank to be
utilized as a resource? For instance, a look back at the pre-
vious example shows that acceptable messages and noise
samples could both be specified by identical syntax, and
indeedR⊂ M. Thus there were messages that also dou-
bled as possible noise samples too, and it is conceivable
that machines can make use of other lower-rank machines
in order to propagate. Then the question arises: how much
information would be required to specify each of these
lower-rank machines?

To answer, consider that we have demonstrated a strong
likeness between Probabilistic Generation Theory and In-
formation Theory. It would therefore serve to make use
of established results in Information Theory, and identify
a corresponding interpretation inε-reproduction. This is
best illustrated with another example.

Example 2.A Strict Generation System

Suppose we are given the strict generation system in Fig-
ure 11, where we know the complete list of parents and

offspringa priori as follows:

x2 = G(x1, r1)

x3 = G(x1, r2)

x4 = G(x1, r3)

x5 = G(x2, r1)

x6 = G(x2, r2)

x7 = G(x3, r1)

x8 = G(x4, r1)

x9 = G(x5, r1)

x10 = G(x5,x9)

x11 = G(x6,x10)

x12 = G(x6,x11)

x13 = G(x7,x12)

x14 = G(x7,x13)

x15 = G(x8,x14)

x16 = G(x8,x15)

x1 = G(x1,x16).

Utilizing the Generation Analysis Algorithm in [3], the
generation sets are obtained as indicated in Figure 12,
where:

M0\M1
1 = {x9,x10,x11,x12,x13,x14,x15,x16}

M1
1\M1

2 = {x5,x6,x7,x8}

M1
2\M1

3 = {x2,x3,x4}

M1
3 = {x1} and

ρ1(Γ) = 3.

This contrived system is thus dependent on lower-rank
machines for the replication ofx1. In accordance with the
form of τε

i , we can also writeι(x∈ Mε
i ), the information

9



M1
1

M0 = {1111,1100,1010,1001,0110,
0101,0011}

{0000}

(a) ε = 1; ρ1(Γ) = 1

M0.55
1 =

{1111}

M0 = {1100,1010,1001,0110,0101,
0011}

{0000}

(b) ε = 0.55; ρ0.55(Γ) = 1

M0 = {1111,1100,1010,1001,0110,0101,
0011}

{0000}

(c) ε ≤ 0.5; ρε (Γ) = 0

Figure 10: Theε-generation set structure of the system in
Example 1.

of a machine belonging toMε
i as

ι(x∈ Mε
i ) = log2

|M0|
∣

∣Mε
i

∣

∣

. (6)

x1

x2
r1

x5r1

x9
r1

x10x9

x6
r2

x11
x10

x12x11

x3

r2

x7

r1
x13

x12

x14x13

x4

r3

x8r1

x15
x14

x16x15

x16

Figure 11: Generation Diagram for Example 2.

M0

M1
1

M1
2

M1
3

Figure 12: Generation set structure of Example 2.

We can calculate these quantities to be:

τ1
i = log2

|M0|

|M1
∞|

= log216= 4 bits,

ι(x∈ M1
2) = log2

|M0|
∣

∣M1
2

∣

∣

= 2 bits,

ι(x∈ M1
1) = log2

|M0|
∣

∣M1
1

∣

∣

= 1 bit,

ι(x∈ M1
0) = log2

|M0|
∣

∣M1
0

∣

∣

= 0 bits,

and so with a four bit code we have that:

• machines inM1
0 have four free bits in their code;

• machines inM1
1 have three free bits in their code,
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e.g., their four bit code starts with a 1;

• machines inM1
2 have two free bits in their code, e.g.,

their four bit code starts with a 11;

• machines inM1
3 have no free bits in their code.

This implies thatx1 = 1111, and so the remaining bit com-
binations inM1

2 are

{1100,1110,1101};

the remaining bit combinations inM1
1 are

{1000,1001,1010,1011};

and the remaining bit combinations inM0 are those not
already specified.

Upon closer examination, it is evident thatM0\M1
1 spec-

ifies an extra bit (and there are only 3 free), since the
bit combinations allowed have to start with a 0. Simi-
larly, M1

1\M1
2 specifies an extra bit (with only 2 free), be-

cause the bit combinations allowed have to start with 10.
M1

2\M1
3 specifies more than 2 bits, since the bit combi-

nations have to start with 11, and in addition, the combi-
nation 1111 is disallowed. Let us introduce the notion of
Rank Information, and define it as follows:

ι(x∈ Mε
i \Mε

i+1) = −log2

∣

∣Mε
i \Mε

i+1

∣

∣

|M0|
. (7)

Checking with the example to see what this gives us,

ι(x∈ M0\M1
1) = −log2

8
16

= 1 bit,

ι(x∈ M1
1\M1

2) = −log2
4
16

= 2 bits,

ι(x∈ M1
2\M1

3) = −log2
3
16

> 2 bits,

ι(x∈ M1
3) = −log2

1
16

= 4 bits,

as desired.

We can generalize this example to any generation system
that is specified completely. Now iny = G(x, r), proba-
bilistic r implies thaty, and henceρε(y) are also proba-
bilistic. In fact, since we are aware of the entire generation
system beforehand, we can calculate the probability of the
rank of an offspring as:

πε
i = P[x∈ Mε

i \Mε
i+1] (8)

=

∣

∣Mε
i \Mε

i+1

∣

∣

|M0|
, for 0≤ i < ρ . (9)

πε
ρ = P[x∈ Mε

ρ ] (10)

=
|Mε

∞|

|M0|
. (11)

Therefore, the Rank Information satisfies

ι(x∈ Mε
i \Mε

i+1) = −log2πε
i , 0≤ i ≤ ρ . (12)

The Rank Entropyof the probabilistic generation system
is:

Hε
r = −

ρ

∑
i=0

πε
i log2πε

i . (13)

Making use of Information Theory, the capacity of a
memoryless channel is the maximum of the mutual infor-
mation over all the possible input probabilities. By con-
struction, the equivalent here amounts to taking the maxi-
mum of the Rank Information, with the result that the re-
productive capacity of a probabilistic generation process
is τε

i , the von Neumann information threshold. This result
makes it clear that there is only a certain amount of in-
formation required to completely specify a machine, and
when this maximum is reached during self-reproduction,
the von Neumann system rank is achieved.

We can also use Shannon’s channel coding theorem,
which states that the transfer rate of a code (in number
of symbols per second) is less than or equal to the channel
capacity divided by the entropy of the source. We have a
similar notion here, i.e., the reproduction rate (in symbols
of generation code per generation),ηε , is constrained in
the manner:

ηε ≤
τε

i

Hε
r

. (14)

The quantity on the right in the above equation is the von
Neumann complexity threshold,τε

c generalizing that in
[3]. Full transfer of complexity implies that the rate of
self-reproduction is at a maximum, and the offspring has
the maximum amount of information needed to achieve
the von Neumann system rank.

4 APPLICATION TO LUNAR ROBOTIC COLONIES

In our efforts to develop self-reproduction as a cost-
effective solution for the establishment of robotic out-
posts, we are planning a physical generation system that
simulates the operation of a growing robot colony. It is
anticipated that, in order to create the International Lunar
Robotic Village, the advanced robots provided by the vari-
ous co-operating space agencies will be multi-disciplinary
in nature, with each robot capable of performing assorted
tasks such as mining for lunar resources as well as build-
ing any necessary infrastructure. These robots will be
structurally different from one another and, although their
functions will necessarily be symbiotic, individuals will
only make decisions for the good of the colony. Thus,
self-reproduction will take place in order to benefit the
group as whole.
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Using off-the-shelf components, the planned generation
system is a simplified version of a robotic village, initially
consisting of two robots. The first robot has a controller
on board a wheeled chassis, and is equipped with a grip-
per. The second robot also has a controller on board a
chassis, but this robot slides along a track, has a storage
receptacle, and does not have a gripper. Both robots are
equipped with the necessary sensors to perceive the envi-
ronment. Figure 13 depicts what these robots would look
like.

Connector
Controller

Chassis

Gripper

(a) Robot 1.

Connector

Slot for Track

Controller

Chassis

Receptacle

(b) Robot 2.

Figure 13: Schematic representation of the robots in the
generation system.

The objective of the colony is to transfer a number of ma-
terials from a location near the middle of the track to a
location at one of the ends of the track. Each piece of ma-
terial is gripped by Robot 1 and placed in the receptacle
of Robot 2, which then transports it to the end of the track
and drops it there (Figure 14). Rather than have the robots
co-operatively determine whether it is advantageous to ex-
pand the colony and pursue self-reproduction, we specify
that each robot self-reproduce after a period of time. This
eliminates any decision-making complications.

Robot 1 self-reproduces by moving a short distance away
from the work site to where a number of Robot 1-type
controllers and chassis are located. It uses the gripper to
connect a controller to its chassis, thereby activating a new
Robot 1 (Figure 15(a)).

Robot 2 begins self-reproduction by moving to the end of
the track opposite from the drop-off location. Here, there
are a number of unconnected controllers on board Robot
2-type chassis. Robot 2 nudges the electrical connector
on the controller when it arrives at this location, thereby
activating a new Robot 2 (Figure 15(b)).

Materials to
be Transferred

Drop-off Location

Robot 2

Robot 2 Resources

Robot 1
Resources

Robot 1

Track

Figure 14: Proposed colony layout.

In this system,

M = {x1,x2}

R = {r1, r2},

wherex1 = Robot 1,x2 = Robot 2,r1 = unconnected Robot
1 controller-chassis combo, andr2 = unconnected Robot
2 controller-chassis combo. The generation functions for
each robot involve the manner in which the controller is
connected to the chassis; we havex1 = G(x1, r1), and
x2 = G(x2, r2). If x1 operates onr2 or if x2 operates on
r1, then any attempt at self-reproduction will not produce
a machine. This is because proper electrical connection
of the desired robot will not have been achieved. For the
generation system specified above, we are able to apply
Probabilistic Generation Theory and evaluate the follow-
ing parameters: the von Neumann thresholds of rank, in-
formation and complexity; channel capacity; reproduction
rate; and the Rank Information and Rank Entropy of the
generation sets. Full details and results on the above gen-
eration system will be presented in a future paper.
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Gripper

Contacts

(a) Robot 1 squeezes contacts together with
its gripper.

Force

Contacts

(b) Robot 2 pushes contacts into position.

Figure 15: Generation functions for the two robots.

5 CONCLUSIONS

We conclude with a list of the major highlights of this
paper.

• Probabilistic Generation Theory is a generalization
of the results in [3]. It is a simple yet comprehensive
method that encompasses reproduction while now
being capable of dealing with the probabilistic selec-
tion of resources. The existence of a von Neumann
rank threshold below which degeneracy always oc-
curs is demonstrated.

• A communication system may be viewed as a gener-
ation system and vice-versa. If we examine a gener-
ation system with the established results of Informa-
tion Theory, we find that the von Neumann threshold
of Information is in fact the channel capacity of the
probabilistic generation process. It is only when this
maximum amount of information is specified that
the von Neumann system rank is achieved, and, re-
alistically, no more information is required to com-
pletely specify an offspring machine. Furthermore,
the reproduction rate proceeds at or below the von
Neumann threshold of complexity per generation,
and the full transfer of complexity implies that the
offspring has the maximum amount of information
needed to achieve the von Neumann system rank.

In addition to the lunar robotic application described in
Section 4, current research efforts are also focused on the
development of a seed identification algorithm to specify
the minimal size for the seed of a viable robotic colony.
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APPENDIX

Proposition 1

Proof. The proof is by induction.

To initialize the induction, note that ifx∈ Mε
1 thenx∈ M0

by Definition 2. ThereforeM0 ⊇ Mε
1 .

Moreover, if x ∈ Mε
2 then there existsy ∈ Mε

1 such that
P[y = G(x, r)] > ε.
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SinceM0 ⊇ Mε
1 , theny ∈ M0. This implies thatx ∈ Mε

1 ,
which must mean thatMε

1 ⊇ Mε
2 .

For the induction hypothesis, assumeMε
k−1 ⊇ Mε

k .

To prove by induction, ifx∈Mε
k+1 then there existsy∈Mε

k
such thatP[y = G(x, r)] > ε.

SinceMk−1 ⊇ Mε
k , theny ∈ Mk−1. This implies thatx ∈

Mε
k , which must mean thatMε

k ⊇ Mε
k+1.

Proposition 2

Proof. The proof is by contradiction.

Suppose∃ y∈ Mε
i for whichP[y = G(x, r)] > ε, ε > 0.

Then, by definition ofMε
i+1, x∈Mε

i+1. But this contradicts
the hypothesis thatx∈ Mε

i \Mε
i+1.

Therefore, ifx ∈ Mε
i \Mε

i+1 andP[y = G(x, r)] > ε, then
y /∈ Mε

i .

Proposition 3

Proof. The proof is by induction.

To initialize the induction, the hypothesis states thatMε
i =

Mε
i+1. Thus for j = i +1, Mε

j = Mε
i .

For the induction hypothesis, assume thatMε
i = Mε

i+1 =
. . . = Mε

j−1 = Mε
j .

To prove by induction, letx∈ Mε
j . Then by the definition

of Mε
j , x is ε-capable of producingy∈ Mε

j−1.

By the induction hypothesis,Mε
j−1 = Mε

j . This implies
that y is also∈ Mε

j , and hencex ∈ Mε
j+1. Thus,Mε

j+1 ⊇
Mε

j .

But by Proposition 1,Mε
j ⊇ Mε

j+1. This must mean that
Mε

j+1 = Mε
j = Mε

i .

Thus ifMε
i = Mε

i+1, then for all j ≥ i, Mε
j = Mε

i .

Proposition 4

Proof. Let ρε(Γ) = ρ be finite. ThenM can be decom-
posed as the union of mutually disjoint sets:

M = (M0\Mε
1)∪(Mε

1\Mε
2)∪·· ·∪(Mε

ρ−1\Mε
ρ)∪Mε

ρ (15)

The sets(M0\Mε
1), (Mε

1\Mε
2), . . ., (Mε

ρ−1\Mε
ρ) all contain

at least one element (by the nature of Definition 2), so
their respective cardinalities are lower-bounded by one.
The cardinality ofMε

ρ is lower-bounded by zero.

Taking the cardinalities of both sides of (15) yields
ρε(Γ) ≤ |M| for finite ρε(Γ).

Suppose however, that the rank is infinite. Then the
sets(M0\Mε

1), (Mε
1\Mε

2), . . ., (Mε
|M|\Mε

|M|+1) are mutu-
ally disjoint. Again, each of these sets has to contain at
least one element by Definition 2, so each of their respec-
tive cardinalities is lower-bounded by one. Now

M ⊇ (M0\Mε
1)∪ (Mε

1\Mε
2)∪·· ·∪ (Mε

|M|\Mε
|M|+1) (16)

and taking the cardinalities of both sides again gives the
contradiction|M| ≥ |M|+1.

Therefore the rank cannot be infinite if there are a finite
number of machines. The rank has to be less than or equal
to the cardinality of the machine set.

Proposition 5

Proof. The proof is by contradiction. Assume that any
one ofxi /∈ Mε

∞. Without loss of generality, letxi = x1.
By Proposition 2,ρε(x2) < ρε(x1), ρε(x3) < ρε(x2), . . .,
ρε(xn) < ρε(xn−1), and thereforeρε(x1) < ρε(xn). Then
ρε(x1) < ρε(x1), which is a contradiction. Hence ifx1,
x2,. . . ,xn form anε-generation cycle of ordern, thenxi ∈
Mε

∞, where 1≤ i ≤ n.

Proposition 6

Proof. We know thatMε
ρ = Mε

ρ+1 = Mε
∞.

If x∈ Mε
∞ thenx∈ Mε

ρ+1.

By the definition ofMε
ρ+1, there existsy ∈ Mε

ρ such that
P[y = G(x, r)] > ε.

Sincey∈ Mε
ρ theny∈ Mε

∞.

Proposition 7

Proof. The proof is by contradiction.

Since the hypothesis states thaty1 ∈ Mε
ρ−1\Mε

ρ can beε-
generated, there existsx∈ Mε

ρ such thatP[y1 = G(x, r)] >
ε.

Let R1 , {r1 : y1 = G(x, r1)}.

ThenR1 6= ⊘ becauseP[y1 = G(x, r)] > ε > 0.5.

For the samex, and sinceρ is finite, Proposition 6 implies
that there existsy2 ∈ Mε

ρ such thaty2 can beε-generated.

Let R2 , {r2 : y2 = G(x, r2)}.

ThenR2 6= ⊘ becauseP[y2 = G(x, r)] > ε > 0.5.

We haveR1 ⊆ R; R2 ⊆ R; and(R1∪R2) ⊆ R.

Sincey1 ∈ Mε
ρ−1\Mε

ρ andy2 ∈ Mε
ρ , theny1 6= y2.

Now if P[y1 = G(x, r1)] = P[R1] > ε, then fory2 6= y1,
P[y2 = G(x, r2)] = P[R2] should be≤ 1− ε.

If R1 = R2, ε < P[R1] ≤ 1− ε.
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But then this means that 0≤ ε ≤ 0.5, which is a contra-
diction.

Therefore,R1 andR2 are distinct and non-empty. Thus the
resource set,R, must contain at least two elements.

Proposition 8

Proof. The proof is by induction.

To initialize the induction, ifx ∈ Mε1
1 , then there exists

y1 ∈ Mε1
0 such thatP[y1 = G(x, r)] > ε1.

Alternatively, if x∈ Mε2
1 , then there existsy2 ∈ Mε2

0 such
thatP[y2 = G(x, r)] > ε2.

But Mε1
0 = Mε2

0 = M0.

Sinceε1 < ε2, and substitutingMε1
0 for Mε2

0 in the above,
we can amend the last if-statement to read:

If x ∈ Mε2
1 , then there existsy2 ∈ Mε1

0 such thatP[y2 =
G(x, r)] > ε1.

This means thatx∈ Mε1
1 . Hence,Mε1

1 ⊇ Mε2
1 .

Now if x ∈ Mε1
2 , then there existsy1 ∈ Mε1

1 such that
P[y1 = G(x, r)] > ε1.

Alternatively, if x∈ Mε2
2 , then there existsy2 ∈ Mε2

1 such
thatP[y2 = G(x, r)] > ε2.

But Mε1
1 ⊇ Mε2

1 .

Sinceε1 < ε2, and substitutingMε1
1 for Mε2

1 in the above,
we can amend the last if-statement to read:

If x ∈ Mε2
2 , then there existsy2 ∈ Mε1

1 such thatP[y2 =
G(x, r)] > ε1.

This means thatx∈ Mε1
2 . Hence,Mε1

2 ⊇ Mε2
2 .

For the induction hypothesis, assumeMε1
k ⊇ Mε2

k .

To prove by induction, ifx∈ Mε1
k+1, then there existsy1 ∈

Mε1
k such thatP[y1 = G(x, r)] > ε1.

If x ∈ Mε2
k+1, then there existsy2 ∈ Mε2

k such thatP[y2 =
G(x, r)] > ε2.

Using the induction hypothesis,Mε1
k ⊇ Mε2

k .

Sinceε1 < ε2, and substitutingMε1
k for Mε2

k in the above,
we can amend the last if-statement to read:

If x ∈ Mε2
k+1, then there existsy2 ∈ Mε1

k such thatP[y2 =
G(x, r)] > ε1.

This means thatx∈ Mε1
k+1. Hence,Mε1

k+1 ⊇ Mε2
k+1.

Proposition 9

Proof. Consider the probabilistic generation system to be
operating at someε1.

Let ρε1(Γ) = ρε1.

That is, a machinex1 ∈ Mε1
ρε1

is either able toε1-replicate
or be a part of anε1-generation cycle. The machine rank
of x1 at ε1 is ρε1(x1) = ρε1.

Now consider the probabilistic generation system to be
operating at someε2, whereε1 < ε2.

Let ρε2(Γ) = ρε2.

That is, a machinex2 ∈ Mε2
ρε2

is either able toε2-replicate
or be a part of anε2-generation cycle.

By Proposition 8,Mε1
ρε2

⊇ Mε2
ρε2

.

In other words,x2 ∈ Mε2
ρε2

⇒ x2 ∈ Mε1
ρε2

, and x2 is able
to ε1-replicate as well (or be a part of anε1-generation
cycle).

Taking the machine rank ofx2 atε1, we getρε1(x2) = ρε2.

But for x2 to be able toε1-replicate (or be a part of an
ε1-generation cycle), that must mean thatρε1 ≤ ρε2.

⇒ ρε1(Γ) ≤ ρε2(Γ).

Proposition 10

Proof. From Proposition 9, we know thatε1 < ε2 implies
that ρε1(Γ) ≤ ρε2(Γ), that is, theMε

i sets either become
bigger or stay the same asε goes to 0. Also, with Free
Generation,ε = 0 implies thatρε(Γ) = 0, that is,Mε

i =
M0 when ε = 0. Therefore, the following statement is
true:

For all γ > 0, there existsδ (γ) such that‖ε‖ < δ implies
that‖ρε(Γ)‖ < γ.

This is equivalent to saying that asε goes to 0,Mε
∞ also

goes toM0.
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