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Abstract: This paper is devoted to the problem of behavior design, which generalizes the
standard global optimization problem of finding an optimizer by producing, on the search space,
a probability density function referred to as the behavior. The generalization depends on a
parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior
becomes a delta function at the location of the global optimizer. The motivation for this
generalization is that traditional off-line global optimization is unresponsive to perturbations of
the objective function. A novel approach to inexpensive responsiveness is to utilize the theory
of Selective Evolutionary Generation Systems (SEGS), which sequentially and probabilistically
selects a candidate optimizer based on the ratio of the fitness values of two candidates and
the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model
a sequence of local, and hence inexpensive, dynamic transitions, this paper shows that such
transitions result in “rational” behavior, and the efficient and responsive search for an optimizer.
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1. INTRODUCTION

1.1 Motivation and Goals

This paper presents the theory and application of a
novel approach to efficient, on-line, inexpensive, responsive
stochastic optimization and search. More specifically, this
work is concerned with the efficient optimization of an
unknown objective function by finding a probability distri-
bution on the search space (for instance, a delta function at
the location that optimizes the objective function, i.e., off-
line optimization) using a scheme that is responsive to per-
turbations of the objective function. Such a scheme is mo-
tivated by the non-responsiveness of off-line optimization
techniques (Dennis and Schnabel, 1996; Ortega and Rhein-
boldt, 2000; Luenberger, 2003; Boyd and Vandenberghe,
2004) to perturbations of the objective function. Small
changes in the objective function may change the sought
probability distribution when the optimizer depends con-
tinuously or discontinuously on the perturbation, thereby
requiring computationally expensive repetitions of off-line
optimization. In practice, the objective function on which a
candidate optimizer is implemented may be different from
that for which the candidate optimizer was determined.

Hence, the goal of this paper is to develop a way of
optimally searching for a desirable outcome, such that
desirable outcomes are found even if outcome desirability
changes. The theoretical solution to this kind of optimiza-
tion is illustrated in Menezes (2010).

An evolutionary computation approach is utilized in this
work. Evolutionary computation for dynamic fitness land-
scapes is a relatively new and uncharted area of study
(for a recent overview, see Dempsey et al. (2009)). As

demonstrated in Menezes (2010), the proposed approach
is different from alternative optimization algorithms like
reinforcement learning (Sutton and Barto, 1998), simu-
lated annealing (Kirkpatrick et al., 1983), genetic algo-
rithms (Goldberg, 1989; Davis, 1991; Mitchell, 1996), and
evolutionary strategies (Rechenberg, 1971; Schwefel, 1995;
Beyer and Schwefel, 2002). The approach is also different
from on-line optimization methods (Ascheuer et al., 1999;
Albers, 2003; Hentenryck and Bent, 2006), which are not
currently designed for responsiveness. The approach can
be shown to be less computationally expensive than the
sequential repetition of off-line optimization techniques.
Although cross-entropy does appear in this theory, the
algorithm here is not related to the cross-entropy method
for optimization (Rubinstein and Kroese, 2004). Moreover,
this work provides insight into the connection between
responsive optimization and cross-entropy. The approach
is formulated as a stochastic process that employs rational
behavior (Meerkov, 1979), and is related to a Markov chain
Monte Carlo method.

1.2 Problem Definition

Let X be a search space. In the context of evolutionary
computation, X is the set of genotypes. The problem of
behavior design seeks 1) a probability density function
(referred to as the behavior) φX : X → R

+ that ac-
complishes specified objectives described below, and 2)
dynamic transition laws that cause the variable x to be
distributed according to φX , i.e., to exhibit the behavior
specified by φX .

Let z : X → Z be an unknown, computable, and possibly
changing function that we are interested in. The set Z is a
metric space, the set of phenotypes. Suppose that we are



given a desired element zdes in the image of z, and we wish
to find x ∈ X such that ||z(x) − zdes|| is small. Formally,
we want to design a behavior φX that achieves a known
expected value Y , i.e.,

E φX
[||z(x) − zdes||] = Y, (1)

and we refer to this expectation as goodness. In the above,
Y is effectively a tolerance on what is considered to be
good behavior, i.e., it is a limitation on the variance of the
behavior. Let y(x) = ||z(x) − zdes||.

We also desire the behavior φX to be responsive to
perturbations in z, i.e.,

∂φX

∂z
6= 0. (2)

The scheme to find φX should be efficient in that it trades
off prior information about X for search effort savings as
quickly as possible.

Let f : Z → R
+. We allow the behavior design method

to employ a function F : X → R
+ : x 7→ F (x) = (f ◦

z)(x) = f(z(x)), a real-valued, positive fitness function. In
the theoretical discussion that follows, we keep F arbitrary
to maintain generality; however, we would also like to
determine if efficient behavior design specifies F .

1.3 Original Contributions

The original contributions of this work include:

• A novel mathematical definition of selection, the
Select function, for use in behavior design.

• A proposition that selective generation is a sufficient
condition for rational behavior.

• An analysis demonstrating that rational behavior can
lead to optimal search.

• A novel mathematical definition of responsiveness
called resilience.

• A proposition that rational behavior is a sufficient
condition for resilience.

• An analysis of the effect that the level of selectivity
has on resilience.

1.4 Paper Outline

The remainder of the paper is as follows. Section 2 high-
lights the applicable literature. Section 3 presents the
fundamentals of a novel scheme for fitness-based selection.
Section 4 proves that a sufficient condition for resilience
is rational behavior, explains why rational behavior is
desirable, demonstrates that resilience may be achieved
inexpensively at each step of the scheme, and discusses
the relationship with Markov chain Monte Carlo methods.
Section 5 presents conclusions.

2. RELEVANT LITERATURE

2.1 Self-X Systems

Self-X systems are systems that are capable of self-
assembly, self-organization, self-repair, self-reconfiguration,
self-replication, or self-reproduction. The origins of this
paper stem from the study of self-reproducing systems, a
field inspired by the work of John von Neumann (1966). A
comprehensive overview of self-replication is documented
in Sipper (1998) and Freitas and Merkle (2004).

2.2 Resilience

The concept of resilience was introduced in the seminal
work of Holling (1973), and a survey of the many defini-
tions of resilience is available in Brand and Jax (2007).
This paper adopts a general notion of resilience: a system
is considered to be resilient if it exhibits a response to
a disturbance. As long as such a response exists, the
characteristic nature of the systems under consideration
will ensure that either recovery from the disturbance to
the original steady state equilibrium takes place, or a
transition to a new optimal equilibrium occurs. Each of
these two features is a traditional meaning of resilience.

2.3 Rational Behavior

This paper utilizes the general theory of rational behavior
developed in Meerkov (1979). A dynamic system with a
decision space is rational if each trajectory of this system
in the space is

(1) ergodic: the trajectory explores all decisions in the
decision space, and

(2) selective: the trajectory slows down in the vicinity of
the most advantageous decisions, i.e., the ratio of the
mean time of stay of the trajectory in the vicinity of
a more favorable decision to the mean time of stay
of the trajectory in the vicinity of a less favorable
decision is larger than unity.

Hence, the theory suggests the possibility of rapid con-
vergence to the optimal state of a dynamic system. Un-
fortunately, global system knowledge may be required to
determine how advantageous a state is.

The hypothesis that the theory of Meerkov (1979) yields
additional benefits when suitably employed for optimiza-
tion is validated in this paper. In addition, it is shown
that local knowledge of the objective function is sufficient
to guarantee rationality.

3. THEORETICAL FOUNDATIONS OF SELECTIVE
EVOLUTIONARY GENERATION SYSTEMS

3.1 Theory of Selective Evolutionary Generation Systems

In behavior design, a cell is any element of the domain of a
reward function, and a resource is any input that facilitates
a transition between cells. Cells may also be referred to as
states or candidate optimizers. A cell utilizes a resource
to reproduce and generate an offspring, i.e., transition to
another cell. Furthermore, it is possible that resources
are chosen probabilistically. Consistent with these notions,
SEGS theory makes the following definition.

Definition 1. An evolutionary generation system is a
quadruple E = (X,R,P,G), where

• X is a set of n cells, X = {x1, x2, . . . , xn};
• R is a set of m resources, R = {r1, r2, . . . , rm}, that

can be utilized for cell reproduction;
• P : R → (0, 1] is a probability mass function on R,

given by P (ri) = Pr[R = ri] = pi,
m
∑

k=1

pk = 1; and

• G : X × R → X is a generation function that maps
a parent cell and a resource into a descendant cell
outcome.



Note that for each resource r ∈ R, we assume that an
inexhaustible supply is available.

Let (rµ) = (r1, r2, . . . , rµ) be a sequence of µ resources
from R. We define the notation

G (x, (rµ)) := G(. . . G(G(x, r1), r2) . . . , rµ) (3)

to denote the cell produced by x using sequence (rµ).

Definition 2. The set of cells, X, of the evolutionary
generation system E = (X,R,P , G) is reachable through
G and R if, for all pairs (x1, x2) ∈ X2, there exists k ∈ N

and a sequence (rk) ∈ R such that x2 = G (x1, (rk)).

Note that reachability of the cells of an evolutionary
generation system is identical to that of reachability of
the vertices of a directed graph in Graph Theory (Diestel,
2005).

In Definition 1, the restriction that the offspring of a
cell be itself a cell implies that the set of cells is closed
(Cassandras and Lafortune, 2008), since there is no feasible
transition to any element outside X. If the set of cells
is also reachable, then X is irreducible (Cassandras and
Lafortune, 2008).

We associate each cell with a non-zero, positive perfor-
mance index that is a measure of the fitness of the cell,
F : X → R

+. The notion of fitness facilitates the following
novel mathematical definition of selection.

Definition 3. Given a cell set, X, and a fitness function
F : X → R

+, let Select : X × X × N → X be a random
function such that if x1 ∈ X and x2 ∈ X are any two cells,
and N ∈ N is the level of selectivity, then

Select(x1, x2, N) =


















x1 with probability
F (x1)

N

F (x1)
N

+ F (x2)
N

,

x2 with probability
F (x2)

N

F (x1)
N

+ F (x2)
N

.

(4)

We can now define a selective evolutionary generation
system (SEGS).

Definition 4. A selective evolutionary generation system is
a quintuple
Γ = (X,R,P,G, F ), where

• (X,R,P,G) is an evolutionary generation system;
• F : X → R

+ is a function that evaluates cell fitness;
• the set of cells, X, is reachable through G and R; and
• the dynamics of the system are given by

X (t + 1) = Select(X (t), G(X (t),R(t)), N). (5)

In (5), X (t) denotes the realization of a random cell
variable at time t, R(t) denotes the realization of a
random resource variable at time t, G(X (t),R(t)) denotes
the offspring of the realized random cell utilizing the
realized random resource at time t, and X (0) has a known
probability mass function.

Also in (5), the probability of a cell realization at some fu-
ture time given the present cell realization is conditionally
independent of the past time history of cell realizations.
Thus, the dynamics of a SEGS form a discrete-time ho-
mogeneous Markov chain (Brémaud, 1999). This property
is useful for the SEGS analysis conducted in Section 4.3.

The Select function has a number of interesting properties:

• For all N ,

Pr[Select(x1, x2, N) = x1]

Pr[Select(x1, x2, N) = x2]
=

(

F (x1)

F (x2)

)N

. (6)

That is, the ratio of the probabilities of selecting
any two cells is equal to the ratio of their respective
fitnesses raised to the power N . This property is called
local rationality.

• For N = 0, the values of F (x1) and F (x2) are
irrelevant. That is,

Pr[Select(x1, x2, 0) = x1] = 1/2, and (7)

Pr[Select(x1, x2, 0) = x2] = 1/2. (8)

• When N → ∞, if F (x1) > F (x2) then

Pr[Select(x1, x2, N) = x1] → 1. (9)

On the other hand, if F (x1) < F (x2) then

Pr[Select(x1, x2, N) = x2] → 1. (10)

• If F (x1) = F (x2) then, for all N ,

Pr[Select(x1, x2, N) = x1] = 1/2, and (11)

Pr[Select(x1, x2, N) = x2] = 1/2. (12)

Comparisons between various optimization methodologies
and a SEGS approach can be made by quantifying the
ratio of the probability of selecting a candidate optimizer
of the objective function to the probability of selecting the
optimizer’s offspring (see Menezes (2010)). The canonical
genetic algorithm with fitness proportional selection and
the (1+1) evolutionary strategy are particular cases of a
SEGS scheme.

4. MARKOV CHAIN ANALYSIS OF SEGS

4.1 Efficiency and Goodness

Let (X,P) be a time-homogeneous, irreducible, ergodic
Markov chain, where X = {x1, x2, . . . , xn} is the set of
states of a Markov process, P ∈ R

n×n is the matrix of
transition probabilities for these states, and n < ∞ is
the number of states. Assume that the initial probability
distribution over the states is known, i.e., we are given
an n-vector p(0) having elements pi(0) = Pr[X (0) = xi]
for all xi ∈ X, where X (0) denotes the state realization

at time 0, and we have
n
∑

i=1

pi(0) = 1. Since we have

assumed that the states in X are ergodic and irreducible,
they admit a unique stationary probability distribution
(Brémaud, 1999; Cassandras and Lafortune, 2008). Let
π = [π1 π2 . . . πn] be the row vector of these stationary
probabilities, satisfying the constraints πi > 0 ∀i, and
n
∑

i=1

πi = 1. Let F : X → R
+ be a positive fitness function.

Let N ∈ N be a natural number. We define rational
behavior for this Markov chain as follows.

Definition 5. The time-homogeneous, irreducible, ergodic
Markov chain (X,P) is said to behave rationally with
respect to fitness F with level N if

πi

πj

=

(

F (xi)

F (xj)

)N

, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (13)

This is a definition of global rationality.



Each stationary probability can also be explicitly char-
acterized to ensure Markov chain rational behavior, as is
indicated by the following theorem.

Theorem 6. The time-homogeneous, irreducible, ergodic
Markov chain (X,P) behaves rationally with respect to
fitness F with level N if and only if

πi =
F (xi)

N

n
∑

k=1

F (xk)
N

, 1 ≤ i ≤ n. (14)

Proof. See Menezes (2010).

Here, we have a more general, probabilistic version of the
optimization of an objective function. A Markov chain that
behaves rationally selects the state of maximum fitness
with the highest stationary probability, and, in the limit
as N approaches ∞, this probability is 1. The problem
and solution then revert to one of standard optimization.
Remarkably, rational behavior in Markov chains is the
result of a subsidiary optimization.

Theorem 7. The stationary distribution π of the time-
homogeneous, irreducible, ergodic Markov chain (X,P)
that behaves rationally with respect to fitness F with level
N solves the optimization problem

min
π1,...,πn

U(π) = −

n
∑

i=1

ϕi ln(πi), (15)

subject to the constraints
n
∑

i=1

πi = 1, and πi > 0, ∀i,

utilizing the fitness distribution

ϕi =
F (xi)

N

n
∑

k=1

F (xk)
N

, 1 ≤ i ≤ n. (16)

Proof. See Menezes (2010).

Furthermore, Theorem 7 states that at the optimum, the
stationary distribution agrees with the fitness distribution,
i.e., π = ϕ.

Using the notion of entropy, we can interpret (15) as
follows. First, we recognize the term − ln(πi) as the in-
formation content of state xi (Shannon, 1948). Hence, the
right hand side of (15) represents the “fitness-expectation
of information.” Moreover, we have the following.

Corollary 8. The time-homogeneous, irreducible, ergodic
Markov chain (X,P) behaves rationally with respect to
fitness F with level N if and only if its stationary prob-
ability distribution minimizes the fitness-expectation of
information. At the optimum, this fitness-expectation of
information is the entropy of the fitness distribution, i.e.,

U∗ = H(ϕ) = −

n
∑

i=1

ϕi ln(ϕi). (17)

Entropy maximization is important for search accord-
ing to Jaynes (1957). The relationship between entropy
maximization and optimal, efficient search is clarified in
Jaynes (1981). Applying the results from Jaynes (1981)
and Jaynes (1957), an exponential normalized fitness func-
tion relates rational behavior, entropy and efficient search
through the following theorem.

Theorem 9. Let y : X → R be an unknown function for
which an expected value, E [y(x)], is a known number Y .
The normalized fitness

ϕi = αe−βy(xi), 1 ≤ i ≤ n, (18)

and the stationary distribution π of the time-homogeneous,
irreducible, ergodic Markov chain (X,P) that behaves
rationally with respect to fitness F with level N solves
the optimization problem

max
ϕ1,...,ϕn

min
π1,...,πn

U(ϕ,π) = −

n
∑

i=1

ϕi ln(πi), (19)

subject to the constraint

E [y(x)] = Y. (20)

Proof. See Menezes (2010).

Hence, a scheme with underlying Markov chain dynamics
that behave rationally also maximizes the entropy of the
fitness distribution when the fitness function is exponen-
tial. The implication is that a fitness function like

F (xi) = e−((z(xi)−zdes)2) (21)

together with a scheme that makes use of rational behavior
(e.g., SEGS) guarantees “good” behaviors efficiently.

4.2 Responsiveness

Definition 10. For any time-homogeneous, irreducible, er-
godic Markov chain (X,P) with a positive fitness function
for all the states in X, the extrinsic resilience of state xi

to changes in the fitness of state xj , j 6= i, is defined as

ρij =
∂πi

∂F (xj)
, (22)

and the intrinsic resilience of state xi to changes in its
own fitness is taken to be

ρii =
∂πi

∂F (xi)
. (23)

Since the stationary distribution π has the closed form
expression (14) for the time-homogeneous, irreducible,
ergodic Markov chain (X,P) that behaves rationally with
respect to fitness F with level N , the extrinsic and intrinsic
resiliencies are

ρij =
∂πi

∂F (xj)
=

−Nπiπj

F (xj)
, ∀j 6= i, (24)

ρii =
∂πi

∂F (xi)
=

Nπi (1 − πi)

F (xi)
. (25)

We say that the Markov chain (X,P) is resilient if ρij 6= 0
for all i and j.

The level of selectivity has the following asymptotic effect.

Theorem 11. For the time-homogeneous, irreducible, er-
godic Markov chain (X,P) that behaves rationally with
respect to fitness F with level N ,

ρij

∣

∣

∣

N=0
j 6=i

= ρii

∣

∣

∣

N=0
= 0, (26)

and
lim

N→∞
j 6=i

ρij = lim
N→∞

ρii = 0. (27)



Proof. See Menezes (2010).

As a result of Theorem 11, we have quantification that
standard optimization (N → ∞) is non-resilient.

Resilience is a result of Markov chain rational behavior:

Theorem 12. The time-homogeneous, irreducible, ergodic
Markov chain (X,P) is resilient if the chain behaves
rationally.

Proof. See Menezes (2010).

Resilience does not always imply Markov chain rational
behavior (see Menezes (2010)). But:

Theorem 13. Ergodicity is a necessary condition for the
time-homogeneous, irreducible Markov chain (X,P) to be
resilient.

Proof. See Menezes (2010).

4.3 SEGS as Markov Chains That Behave Rationally

Definition 14. Let Γ = (X,R,P,G, F ) be a SEGS. Let
xi, xj ∈ X be any two cells, and rk ∈ R be a resource. The
descendancy tensor, δ, has elements

δijk =







1 if xj = G(xi, rk),

1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m,

0 otherwise.

(28)

Hence, the descendancy tensor indicates whether it is
possible to produce cell xj in one step from cell xi, using
resource rk. We can use this tensor to create a matrix
that represents the conditional probability of generating xj

given that the progenitor is xi, by utilizing the probability
of selecting each available resource and summing over all
m resources as follows.

Definition 15. For the SEGS Γ = (X,R,P,G, F ), the
matrix of generation probabilities, γ, also called the un-
selective matrix of transition probabilities, has elements

γij = Pr[offspring is xj | progenitor is xi], (29)

=
m

∑

k=1

δijkpk, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (30)

This matrix is a stochastic matrix (see Menezes (2010)).

Recall that a SEGS follows the stochastic Markov process
described by (5). Therefore, we can find a matrix of tran-
sition probabilities to describe the cell-to-cell transitions
that occur as a result of the selection dynamics. For the
SEGS Γ = (X,R,P,G, F ), the matrix of transition proba-
bilities, P, has elements

Pij =Pr[X (t + 1) = xj | X (t) = xi], (31)

=Pr[Select(xi, xj , N) = xj | X (t) = xi]×

Pr[offspring is xj | progenitor is xi] (32)

=



























1

1 +
(

F (xi)
F (xj)

)N
γij , ∀j 6= i,

γii +

n
∑

j=1
j 6=i

1

1 +
(

F (xj)
F (xi)

)N
γij , if j = i.

(33)

Note that the matrix of transition probabilities in (33) is
also a stochastic matrix (see Menezes (2010)).

Theorem 16. For the ergodic SEGS Γ = (X,R,P,G, F ),
assume that the matrix of generation probabilities, γ,
is symmetric. Then the Markov chain representing the
stochastic dynamics of the ergodic SEGS behaves ratio-
nally with fitness F and level N . That is, the row vector
π = [π1 π2 . . . πn], where πi satisfies (14), is a left eigen-
vector of P, the matrix of transition probabilities for Γ,
with corresponding eigenvalue 1 (i.e., πP = π). Hence, π

is the vector of stationary probabilities for the SEGS.

Proof. See Menezes (2010).

As a result of Theorem 12, the stochastic dynamics of
the ergodic SEGS with symmetric matrix of generation
probabilities, γ, are resilient. Hence, a SEGS is a compu-
tationally inexpensive on-line technique to achieve these
characteristics because only local decisions between two
candidate optimizers are made at any time. The need to
evaluate the fitness of all elements in the domain of the
objective function, or even in a sub-population of candi-
date optimizers (as in genetic algorithms or evolutionary
strategies), is avoided.

The symmetry condition on the matrix of generation
probabilities, γ, implies that there exists equiprobable
forward and reverse transitions between any pair of cells
prior to the selection process. More specifically, symmetry
of γ is a requirement that mutations be reversible.

Theorem 17. For the ergodic SEGS Γ = (X,R,P,G, F ),
assume that the matrix of generation probabilities, γ,
is symmetric. Then the Markov chain representing the
stochastic dynamics of the ergodic SEGS is time-reversible,
i.e.,

πiPij = πjPji, ∀i, j. (34)

Proof. See Menezes (2010).

As a consequence, the Markov chain representing the
stochastic dynamics of the SEGS and its time reversed
form are statistically the same.

4.4 Relationship Between SEGS and Markov Chain Monte
Carlo Algorithms

The SEGS algorithm is an example of a Markov chain
Monte Carlo (MCMC) algorithm. Since convergence to
the target distribution, the stationary distribution π,
is easier to check for reversible Markov chains, these
Markov chains are the most frequent case of MCMC
algorithms (Brémaud, 1999). Hence, the design of an
MCMC algorithm involves finding an ergodic transition
matrix P that satisfies

πiPij = πjPji, ∀i, j. (35)

According to Brémaud (1999), a typical choice of Pij has
the form

Pij = Qijαij , ∀j 6= i. (36)

Here, Q is a probability transition matrix (called the
candidate-generating matrix ) with elements Qij represent-
ing the probability of “tentatively” choosing a transition
from i to j, and α is a probability transition matrix
with elements αij representing the probability of accepting
that transition. A generic formulation for the acceptance
probabilities is specified by the Hastings algorithm, which
sets



αij =
sij

1 +
πiQij

πjQji

, (37)

where sij are the elements of a symmetric matrix S. Spe-
cial cases of the Hastings algorithm include the Metropo-
lis algorithm, which is used in simulated annealing, and
Barker’s algorithm.

The acceptance probability for Barker’s algorithm sets
sij = 1 in (37), so that

αij =
1

1 +
(

πi

πj

) (

Qij

Qji

) . (38)

In the case of purely random Q, this becomes

αij =
1

1 +
(

πi

πj

) . (39)

A SEGS has Q = γ. For rational behavior, we impose a
symmetry condition so that Qij = Qji. Setting sij = 1 in
(37), the definition of rational behavior implies that the
acceptance probability utilized by the SEGS algorithm is

αij =
1

1 +
(

πi

πj

) . (40)

Thus, the SEGS algorithm and Barker’s algorithm are the
same. However, this paper arrived at Barker’s algorithm
in a non-traditional manner, i.e., we did not assume time-
reversibility and begin at Hasting’s algorithm. Instead,
we started with a self-reproducing process and selected
according to local rationality. The aim was to achieve
global rational behavior, thereby resulting in resilience. A
required assumption was equiprobable forward and reverse
transitions prior to selection. This assumption resulted in
the SEGS algorithm being time-reversible. Whereas the
Metropolis algorithm is optimal with respect to asymp-
totic variance in the class of Hastings algorithms with fixed
candidate-generating matrix Q Brémaud (1999), Barker’s
algorithm is optimal with respect to search efficiency under
the technical conditions specified in Theorem 9.

5. CONCLUSIONS

This paper has proposed a novel on-line behavior design
strategy by demonstrating and utilizing the fact that
resilience is guaranteed by rational behavior, the use of
which is desirable because it can lead to a search that
trades off prior information for search effort savings as
quickly as possible. Illustrative applications of the strategy,
associated computational results, and comparisons with
traditional algorithms are available in Menezes (2010).
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