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Chapter 1

MARKOV CHAIN

RATIONAL BEHAVIOR

Amor A. Menezes and Pierre T. Kabamba
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI
48109.
amenezes@umich.edu

Motivation: Traditional off-line global optimization is non-resilient and non-
opportunistic. That is, traditional global optimization is unresponsive to small
perturbations of the objective function that require a small or large change in
the optimizer. On-line optimization methods that are more resilient and oppor-
tunistic than their off-line counterparts typically consist of the computationally
expensive sequential repetition of off-line techniques. A novel approach to on-
line global optimization is to utilize the theory of rational behavior to develop
a technique that is resilient, opportunistic, and inexpensive.

Overview: This paper proves that decision processes with time-homogeneous,
irreducible, ergodic Markov chain dynamics that satisfy the axioms of rational
behavior result in the resilient and opportunistic determination of a global op-
timizer for a given objective function. The optimization of control gains for a
sample dynamic system illustrates the theory.

1.1 Introduction

The Theory of Rational Behavior (TRB), as described in Meerkov (1979), pro-
poses an axiomatic behavior of individual elements that take decisions in a
decision space. This theory captures a trait frequently observed in nature:
individuals are capable of selecting the most favorable decision from among
all possible options without executing complex calculations. The work seeks
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2 CHAPTER 1. MARKOV CHAIN RATIONAL BEHAVIOR

the computationally simplest mechanisms that lead to rationality (see also Lin
(2006)).

More specifically, TRB defines general dynamical systems with certain deci-
sion spaces to be rational if the trajectories of these systems in the spaces are
ergodic (i.e., the trajectories explore all decisions in the decision space), and
selective (i.e., the trajectories slow down in the vicinity of the most advanta-
geous states). The primary benefit of this approach is the possibility of rapid
convergence to the optimal state. It has been postulated that the use of TRB
in optimization yields additional benefits – this paper proves that a TRB-based
optimization scheme is responsive to changes that alter the optimal state in a
dynamic system.

1.1.1 The Need For Responsiveness

In standard optimization, we are given a mapping from a set X into the reals,

F : X → R. (1.1)

Although the exact function may not be known a priori, the value of this func-
tion can typically be evaluated for all x in X. We seek an element, x∗ in X,
that satisfies

F (x∗) ≥ F (x), ∀x ∈ X, (1.2)

subject to certain constraints. This is known as the global maximization problem
for the objective function (1.1).

The optimization accomplished by traditional deterministic algorithms (Kuhn
and Tucker (1951), Dennis and Schnabel (1996), Ortega and Rheinboldt (2000),
Luenberger (2003), Boyd and Vandenberghe (2004)) and other randomized al-
gorithms such as simulated annealing (Kirkpatrick et al. (1983), Corana et al.
(1987)), genetic algorithms (Goldberg (1989), Davis (1991), Mitchell (1996)) and
evolutionary strategies (Rechenberg (1971), Schwefel (1995), Beyer and Schwefel
(2002), Fogel (2006)) is off-line (as defined by Atallah (1999)), since optimiza-
tion of the unknown objective function (1.1) is carried out under the assumption
of time-independence of the values of candidate optimizers, and the algorithms
therefore have advance access to a complete and unchanging data set. However,
off-line optimization strategies are non-resilient and non-opportunistic, as illus-
trated in Figure 1.1. That is, traditional global optimization is unresponsive to
perturbations of the objective function applied after the optimizer x∗ is imple-
mented. This unresponsiveness holds when the optimizer changes as a differen-
tiable function of the perturbation (see Figure 1.1 (a)) or as a non-differentiable
function of the perturbation (see Figure 1.1 (b)). We refer to these two cases as
non-resilient and non-opportunistic, respectively. We formally define resiliency
and opportunism in Section 1.2.

Resiliency and opportunism in an optimization scheme are important be-
cause, in general, there are no guarantees that the value of a candidate opti-
mizer is time-independent and hence the same as the initial objective function
value. For the limiting case where such guarantees exist, the distribution of
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xx∗ x∗′

F (x)

(a) Non-resiliency

xx∗ x∗′

F (x)

(b) Non-opportunism

Figure 1.1: Off-line optimization strategies yield results that are non-resilient
and non-opportunistic.

the candidate optimizers over the domain of the objective function is the delta
function. In the more general case where perturbations of the objective func-
tion occur, a broader concept of optimization in the presence of perturbations
is required. One expects that the distribution of candidate optimizers will now
have an extended support.

The sequential repetition of off-line techniques results in on-line (with re-
spect to the perturbations) optimization methods that are more resilient and
opportunistic than their off-line counterparts. However, such sequential repeti-
tions can be computationally expensive, a fact that may be shown by either an
amortized analysis (Cormen et al. (2001)) or a competitive analysis (Borodin
and El-Yaniv (1998)).

1.1.2 Goals and Contributions

The goal of this paper is to determine the conditions for which an on-line global
optimization strategy is resilient and opportunistic for the standard optimization
problem (1.2).

More specifically, this paper shows that rational behavior is a sufficient con-
dition for resiliency and opportunism. The work then utilizes a rationally be-
having decision process as a resilient and opportunistic on-line global scheme to
optimize control gains for a sample dynamic system.

1.1.3 Chapter Outline

Section 1.2 demonstrates how time-homogeneous, irreducible, ergodic Markov
chain dynamics that satisfy the axioms of rational behavior yield resiliency and
opportunism. Section 1.3 illustrates the theory. Section 1.4 presents conclusions.

1.2 Markov Chains That Behave Rationally

In this section, we develop a Theory of Rational Behavior for time-homogeneous,
irreducible, ergodic Markov chains. We then discuss the entropy, resiliency and
opportunism of Markov chains that satisfy the axioms of this theory.
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1.2.1 Markov Chain Rational Behavior

Let (X,P) be a time-homogeneous, irreducible, ergodic Markov chain, where
X = {x1, x2, . . . , xn} is the set of states of a Markov process, P ∈ R

n×n is the
matrix of transition probabilities for these states, and n < ∞ is the number of
states. Assume that the initial probability distribution over the states is known,
i.e., we are given an n-vector p(0) having elements pi(0) = Pr[X (0) = xi] for
all xi ∈ X, where X (0) denotes the state realization at time 0, and we have
n
∑

i=1

pi(0) = 1. Since we have assumed that the states in X are ergodic (i.e.,

positive recurrent and aperiodic) and irreducible, they admit a unique stationary
probability distribution. Let π =

[

π1 π2 . . . πn

]

be the row vector of these

stationary probabilities, satisfying the constraints πi > 0 ∀i, and
n
∑

i=1

πi = 1. Let

F : X → R
+ be a positive fitness function for all the states. Let N ∈ N be a

natural number. We define rational behavior for this Markov chain as follows.

Definition 1.1. The time-homogeneous, irreducible, ergodic Markov chain
(X,P) is said to behave rationally with respect to fitness F with level N if

πi

πj

=

(

F (xi)

F (xj)

)N

, 1 ≤ i, j ≤ n. (1.3)

This definition is consistent with Meerkov (1979) because time averages and
ensemble averages are equal in an ergodic process. The requirement that πi >

0 ∀i with
n
∑

i=1

πi = 1 corresponds to the ergodic postulate of Meerkov (1979),

and the requirement that N > 0 corresponds to the selective (i.e., retardation)
postulate. Note that we have recast the requisite scalar function of Meerkov
(1979) as a reward, instead of a penalty.

Each stationary probability can also be explicitly characterized to ensure
Markov chain rational behavior, as is indicated by the following theorem.

Theorem 1.1. The time-homogeneous, irreducible, ergodic Markov chain
(X,P) behaves rationally with respect to fitness F with level N if and only if

πi =
F (xi)

N

n
∑

k=1

F (xk)
N

, 1 ≤ i ≤ n. (1.4)

Proof. See Appendix.

Here, we have a more general, probabilistic version of the optimization in
(1.1). A Markov chain that behaves rationally will select the state of maximum
fitness with the highest stationary probability, and, in the limit as N approaches
∞, this probability is 1. The problem and solution then revert to one of standard
optimization.

Furthermore, rational behavior in Markov chains is the result of a subsidiary
optimization.
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Theorem 1.2. The stationary distribution π of the time-homogeneous, ir-
reducible, ergodic Markov chain (X,P) that behaves rationally with respect to
fitness F with level N solves the optimization problem

min
π1,...,πn

Φ(π) = −
n
∑

i=1

F (xi)
N ln(πi), (1.5)

subject to the constraints
n
∑

i=1

πi = 1, (1.6)

πi > 0, ∀i. (1.7)

Proof. See Appendix.

Note that in (1.3), rational behavior is invariant under positive scaling of
fitness. Hence, there is no loss of generality in assuming that the fitness function
is normalized. Accordingly, let ϕ =

[

ϕ1 ϕ2 . . . ϕn

]

be the distribution of
the N th power of fitness, where

ϕi =
F (xi)

N

n
∑

k=1

F (xk)
N

, 1 ≤ i ≤ n. (1.8)

The vector ϕ ∈ R
n is a distribution of order n because it satisfies ϕi > 0 ∀i,

and
n
∑

k=1

ϕk = 1. Let

U(π) =
Φ(π)

n
∑

k=1

F (xk)
N

. (1.9)

Then, the optimization problem (1.5) can be normalized as

min
π1,...,πn

U(π) = −

n
∑

i=1

ϕi ln(πi), (1.10)

subject to the constraints (1.6) and (1.7). Furthermore, Theorem 1.2 states that
at the optimum, the stationary distribution agrees with the fitness distribution,
i.e., π = ϕ.

1.2.2 Entropy of Markov Chains That Behave Rationally

Let Dn be the set of distributions of order n, and define the entropy of a distri-
bution (Shannon (1948)) as follows.

Definition 1.2. Entropy is the function

H : Dn → R : ϕ 7→ H(ϕ) = −

n
∑

i=1

ϕi ln(ϕi). (1.11)
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Using the notion of entropy, we can interpret (1.10) as follows. First, we
recognize the term − ln(πi) as the information content of state xi (Shannon
(1948)). Hence, the right hand side of (1.10) represents the “fitness-expectation
of information.” Moreover, we have the following:

Corollary 1.1. The time-homogeneous, irreducible, ergodic Markov chain
(X,P) behaves rationally with respect to fitness F with level N if and only if its
stationary probability distribution minimizes the fitness-expectation of informa-
tion. At the optimum, this fitness-expectation of information is the entropy of
the fitness distribution, i.e.,

U∗ = H(ϕ) = −

n
∑

i=1

ϕi ln(ϕi). (1.12)

A basic property of entropy that is alluded to in Kerridge (1961) is as follows.

Theorem 1.3. Let ϕ ∈ Dn be arbitrary. Then,

min
π∈Dn

−

n
∑

i=1

ϕi ln(πi), (1.13)

has a minimum value of H(ϕ) that is achieved at π = ϕ.

Equivalently, ∀ϕ ∈ Dn, ∀π ∈ Dn,

−

n
∑

i=1

ϕi ln(πi) ≥ −

n
∑

i=1

ϕi ln(ϕi), (1.14)

with the equality holding if and only if π = ϕ.

Equivalently, ∀ϕ ∈ Dn, π ∈ Dn,

−
n
∑

i=1

ϕi ln

(

πi

ϕi

)

≥ 0, (1.15)

with the equality holding if and only if π = ϕ.

Proof. See Appendix.

For Markov chains that behave rationally, and therefore possess fitness frac-
tions that are distributed over the set of states as in (1.8), the entropy quantifies
how egalitarian or elitist the states are. That is, the entropy is highest when
all states have equal fitness; conversely, the entropy is lowest when there is only
one state with a fitness fraction of unity and all other fitness fractions are zero.
Equation (1.11) arises in other well-known fields, and similar interpretations
for the distributed quantities and the entropy exist (Shannon (1948), Kerridge
(1961), Pathria (1996), Cengel and Boles (2001)).
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1.2.3 Resiliency and Opportunism of Markov Chains That

Behave Rationally

We can now formally define resiliency, first described through Figure 1.1 (a), as
the sensitivity of the stationary distribution to changes in fitness.

Definition 1.3. For any time-homogeneous, irreducible, aperiodic Markov
chain (X,P) with a positive fitness function for all the states in X, the extrinsic
resiliency of state xi to changes in the fitness of state xj, j 6= i, is defined as

ρij =
∂πi

∂F (xj)
, (1.16)

and the intrinsic resiliency of state xi to changes in its own fitness is taken to
be

ρii =
∂πi

∂F (xi)
. (1.17)

Since the stationary distribution π has the closed form expression (1.4) for
the time-homogeneous, irreducible, ergodic Markov chain (X,P) that behaves
rationally with respect to fitness F with level N , the extrinsic and intrinsic
resiliencies become

ρij =
∂πi

∂F (xj)
=

−Nπiπj

F (xj)
, ∀j 6= i, (1.18)

ρii =
∂πi

∂F (xi)
=

Nπi (1 − πi)

F (xi)
. (1.19)

We say that the Markov chain (X,P) is resilient if ρij 6= 0 for all i and j.
Implicit in resiliency equations (1.16) and (1.17) is the differentiability of the

function πi (F (x1) , . . . , F (xn)) as given by (1.4). If πi (F (x1) , . . . , F (xn)) is
not differentiable, as in Figure 1.1 (b), then we can define opportunism through
the use of the more general Gâteaux derivative, if it exists. Thus, using the
notation of Luenberger (1969), the extrinsic opportunism of state xi to changes
in the fitness of state xj , j 6= i, is defined as

ωij = djπi(F; ej), (1.20)

and the intrinsic opportunism of state xi to changes in its own fitness is taken
to be

ωii = diπi(F; ei), (1.21)

where F is the vector of fitness values
[

F (x1) . . . F (xn)
]

, and {e1, . . . , en} is
the standard basis for R

n. We say that the Markov chain (X,P) is opportunistic
if ωij 6= 0 for all i and j.

For Markov chains that behave rationally, the definitions of resiliency and
opportunism are the same because of the equivalence of the Gâteaux and partial
derivatives.

The level of selectivity has the following asymptotic effect on resiliency.
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Theorem 1.4. For the time-homogeneous, irreducible, ergodic Markov chain
(X,P) that behaves rationally with respect to fitness F with level N ,

ρij

∣

∣

∣

N=0
= ρii

∣

∣

∣

N=0
= 0, (1.22)

and

lim
N→∞

ρij = lim
N→∞

ρii = 0. (1.23)

Proof. See Appendix.

As a result of Theorem 1.4, we have quantification that standard optimiza-
tion (N = ∞) is non-resilient.

Resiliency and opportunism is a direct outcome of Markov chain rational
behavior, as stated below.

Theorem 1.5. The time-homogeneous, irreducible, ergodic Markov chain
(X,P) is resilient and opportunistic if the chain behaves rationally.

Proof. See Appendix.

Resiliency and opportunism do not always imply Markov chain rational be-
havior. But we can state the following instead.

Theorem 1.6. Ergodicity is a necessary condition for the time-homogeneous,
irreducible, ergodic Markov chain (X,P) to be resilient and opportunistic.

Proof. See Appendix.

Furthermore, there is a fundamental trade-off between extrinsic and intrinsic

resiliency that is imposed by the constraint
n
∑

i=1

πi = 1. Taking the partial

derivative of this constraint with respect to the fitness of state xi, we obtain

∂πi

∂F (xi)
+

n
∑

j=1
j 6=i

∂πj

∂F (xi)
= 0. (1.24)

The implication is that any change in fitness that improves a state’s intrinsic
resiliency is at the expense of the extrinsic resiliency of all other states. Similarly,
any change in fitness that improves a state’s extrinsic resiliency is at the expense
of the intrinsic resiliency of another state, and the extrinsic resiliency of all other
states.

1.3 Example Application

This section applies the theory developed in Section 1.2 to a model of a dy-
namic system that Professor Meerkov and the authors are interested in. This
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model was developed with collaborators in industry, and refers to a state-of-
the-art technological system. Utilizing a scheme that is developed in Menezes
and Kabamba (2009), which is a decision process with time-homogeneous, ir-
reducible, ergodic Markov chain dynamics that satisfy the axioms of rational
behavior, the problem is to optimize control gains such that acceptable system
performance is achieved.

1.3.1 Problem Description

Consider the system block diagram in Figure 1.2, where the plants, P1 and P2,
and the plant output, v3, are subject to external disturbances d1 ∈ [d1i, d1f ]
and d2 ∈ [d2i, d2f ] as shown. The input r is a reference signal, v1, v2 and v3

are intermediate signals, and y is the output signal. Control signals u1 and u2

utilize the measured signals v2 and y, and control gains K1 and K2.

P1 P2

K1 K2

r v1 v2 v3 y

u1 u2

d1 d2 d1 d2

Figure 1.2: Block diagram of the example dynamic system.

Let the set of states, X, be the set of ordered pairs (K1,K2) where K1 and
K2 take discrete values over a finite interval, e.g., −20 ≤ K1,K2 ≤ 20. Since
the desired output is ydes = 0, with an acceptable tolerance of ±1, a suitable
fitness function for the states is

F = exp
(

− (ydes − y)
2
)

. (1.25)

Transitions between states take place in accordance with Menezes and Kabamba
(2009), in such a way that a random walk from one (K1,K2) pair to another
transitions according to the ratio of fitnesses of the states raised to the power
of N .

1.3.2 Results

A sample run of the optimization scheme when N = 5 is depicted in Figures
1.3 to 1.6 for fixed disturbances d1 and d2. A pair of control gains that achieves
satisfactory performance is found within 50 generations. To demonstrate distur-
bance rejection, the disturbances are varied after 50 generations and the scheme
is quickly able to find a new pair of gains that achieves an acceptable output.
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Figure 1.3: Fitness of the control gains per generation.
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Figure 1.4: Satisfactory output is maintained despite disturbance changes at
generation 50.
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Figure 1.5: Control gain pairs per generation.
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Figure 1.6: Disturbance variations at generation 50.
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Similarly, the optimization scheme is resilient to internal model variations,
and this is depicted in Figures 1.7 to 1.9 for fixed disturbances d1 and d2, N = 5,
and an internal parameter change at the 50th generation.
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Figure 1.7: Fitness of the control gains per generation.
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Figure 1.8: Satisfactory output is maintained despite an internal parameter
change at generation 50.
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Figure 1.9: Control gain pairs per generation.

Typically, the scheme averages 21 seconds to compute the output of 100
generations while running in MATLAB on a 1.4 GHz single processor desktop
computer with 1 GB of RAM.

1.4 Summary

This paper has

• demonstrated that the desirable characteristics of resiliency and oppor-
tunism in a time-homogeneous, irreducible, ergodic Markov chain are
guaranteed by rational behavior. The ratio of the stationary probabil-
ity of the optimizer of a fitness function to any other element’s stationary
probability is given by

πI

πj

=

(

F (xI)

F (xj)

)N

, 1 ≤ j ≤ n, (1.26)

where F (xI) > F (xi) for all i implies that xI is the most frequent. In the
limit as N approaches infinity, πI approaches 1, and standard optimization
is recovered.

• shown that the entropy quantifies how egalitarian or elitist the time-
homogeneous, irreducible, ergodic Markov chain rational behavior is.

• indicated that resiliency is a conserved quantity, and any improvements to
the resiliency of a particular element decreases the resiliency of the other
elements.
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• utilized the theory to successfully optimize the control gains for a sample
dynamic system, without expending significant computation effort.

1.5 Appendix

Theorem 1.1.

Proof. To show that (1.4) implies Markov chain rational behavior, consider the
ratio of any πi to πj , i 6= j, where each satisfies (1.4). Equation (1.3) follows
immediately.

To show that Markov chain rational behavior implies (1.4), we begin with

n
∑

k=1

πk = 1.

Dividing both sides of the equation by πi, we obtain

n
∑

k=1

πk

πi

=
1

πi

, 1 ≤ i ≤ n,

which, using (1.3), yields

n
∑

k=1

(

F (xk)

F (xi)

)N

=
1

πi

, 1 ≤ i ≤ n.

Multiplying by F (xi)
N and solving for πi yields (1.4), which completes the

proof.

Theorem 1.2.

Proof. We use the method of Karush-Kuhn-Tucker (KKT) multipliers to solve
the optimization problem

min
π1,...,πn

Φ(π) = −

n
∑

i=1

F (xi)
N ln(πi),

subject to
n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n.

Let L(π1, . . . , πn, λ, µ1, . . . , µn) =

−

n
∑

i=1

F (xi)
N ln(πi) + λ

(

n
∑

i=1

πi − 1

)

−

n
∑

i=1

µiπi.
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The KKT necessary conditions for optimality are

−F (xi)
N

πi

+ λ − µi = 0, 1 ≤ i ≤ n,

n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n,

λ ≥ 0,

µi ≥ 0, 1 ≤ i ≤ n,

λ

(

n
∑

i=1

πi − 1

)

= 0,

µiπi = 0, 1 ≤ i ≤ n.

The first necessary condition becomes

−F (xi)
N + λπi − µiπi = 0, 1 ≤ i ≤ n.

Since µiπi = 0 for all i, we obtain

−F (xi)
N + λπi = 0, 1 ≤ i ≤ n.

Next, the constraint πi > 0 for all i and the positive nature of F (xi)
N imply

that λ 6= 0. Therefore,

πi =
F (xi)

N

λ
, 1 ≤ i ≤ n.

n
∑

i=1

πi =

n
∑

i=1

F (xi)
N

λ
, 1 ≤ i ≤ n.

Since
n
∑

i=1

πi = 1, we find that

λ =

n
∑

i=1

F (xi)
N ,

and hence,

πi =
F (xi)

N

n
∑

k=1

F (xk)
N

, 1 ≤ i ≤ n.

Thus, the stationary distribution in (1.4) satisfies the first order necessary con-
ditions for optimality.

Moreover, we have
∂2Φ(π)

∂πj∂πi

= 0 for j 6= i,
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∂2Φ(π)

∂π2
i

=
F (xi)

N

π2
i

> 0.

Hence, the optimization problem has a strictly convex cost function and linear
constraints. Thus, the solution of the first order necessary conditions is the
global optimizer, which completes the proof.

Theorem 1.3.

Proof. Similar to Theorem 1.2, we use the method of Karush-Kuhn-Tucker
(KKT) multipliers to solve the following optimization problem for arbitrary
ϕ ∈ Dn.

min
π∈Dn

−

n
∑

i=1

ϕi ln(πi)

is equivalent to

min
π1,...,πn

Φ(π) = −
n
∑

i=1

ϕi ln(πi),

subject to
n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n.

Let L(π1, . . . , πn, λ, µ1, . . . , µn) =

−

n
∑

i=1

ϕi ln(πi) + λ

(

n
∑

i=1

πi − 1

)

−

n
∑

i=1

µiπi.

The KKT necessary conditions for optimality are

−ϕi

πi

+ λ − µi = 0, 1 ≤ i ≤ n,

n
∑

i=1

πi − 1 = 0,

−πi < 0, 1 ≤ i ≤ n,

λ ≥ 0,

µi ≥ 0, 1 ≤ i ≤ n,

λ

(

n
∑

i=1

πi − 1

)

= 0,

µiπi = 0, 1 ≤ i ≤ n.

The first necessary condition becomes

−ϕi + λπi − µiπi = 0, 1 ≤ i ≤ n.
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Since µiπi = 0 for all i, we obtain

−ϕi + λπi = 0, 1 ≤ i ≤ n.

Next, the constraint πi > 0 for all i and the positive nature of ϕi imply that
λ 6= 0. Therefore,

πi =
ϕi

λ
, 1 ≤ i ≤ n.

n
∑

i=1

πi =
n
∑

i=1

ϕi

λ
, 1 ≤ i ≤ n.

Since
n
∑

i=1

πi = 1, we find that

λ =

n
∑

i=1

ϕi = 1

because ϕ ∈ Dn. Hence,

πi = ϕi, 1 ≤ i ≤ n,

satisfies the first order necessary conditions for optimality. The minimum value
is the entropy, (1.11).

Moreover, we have

∂2Φ(π)

∂πj∂πi

= 0 for j 6= i,

∂2Φ(π)

∂π2
i

=
ϕi

π2
i

> 0.

Hence, the optimization problem has a strictly convex cost function and linear
constraints. Thus, the solution of the first order necessary conditions is the
global optimizer, which completes the proof.

Theorem 1.4.

Proof. We prove both parts of this theorem directly. Consider that

ρij

∣

∣

∣

N=0
=

−Nπiπj

F (xj)

∣

∣

∣

∣

N=0

,

=
−N

F (xj)

F (xi)
N

n
∑

k=1

F (xk)
N

F (xj)
N

n
∑

k=1

F (xk)
N

∣

∣

∣

∣

∣

∣

∣

∣

N=0

.
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By substitution, ρij

∣

∣

∣

N=0
is 0. Similarly,

ρii

∣

∣

∣

N=0
=

Nπi (1 − πi)

F (xi)

∣

∣

∣

∣

N=0

,

=
N

F (xi)

F (xi)
N

n
∑

k=1

F (xk)
N









1 −
F (xi)

N

n
∑

k=1

F (xk)
N









∣

∣

∣

∣

∣

∣

∣

∣

N=0

.

By substitution, ρii

∣

∣

∣

N=0
is also 0.

For the second part of the theorem, we need the following lemma.

Lemma 1.1. Let 0 < α < 1. Then lim
N→∞

NαN = 0.

This lemma may be proved through the application of L’Hôpital’s rule.

Let I be the index for which F (xi) is maximized, and assume that I is
unique. Then,

lim
N→∞

F (xj)
N

F (xI)
N

= 0, ∀j 6= I, and

lim
N→∞

n
∑

k=1

F (xk)
N

F (xI)
N

= 1.

Consider that

lim
N→∞

ρij = lim
N→0

−Nπiπj

F (xj)
,

= lim
N→∞

−N

F (xj)

F (xi)
N

n
∑

k=1

F (xk)
N

F (xj)
N

n
∑

k=1

F (xk)
N

,

= lim
N→∞

−N

F (xj)

F (xi)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

F (xj)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

Now for all i 6= j, where i 6= I and j 6= I, the application of Lemma 1.1 with

α = F (xi)
F (xI) implies that lim

N→∞
ρij is equal to 0.

If i = I 6= j, then the application of Lemma 1.1 with α =
F (xj)
F (xI) implies that

lim
N→∞

ρij is equal to 0.

Lastly, if i 6= j = I, then the application of Lemma 1.1 with α = F (xi)
F (xI)

implies that lim
N→∞

ρij is equal to 0.

Thus, for all i and j, lim
N→∞

ρij = 0.
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Similarly,

lim
N→∞

ρii = lim
N→0

Nπi (1 − πi)

F (xi)
,

= lim
N→∞

N

F (xi)

F (xi)
N

n
∑

k=1

F (xk)
N









1 −
F (xi)

N

n
∑

k=1

F (xk)
N









,

= lim
N→∞

N

F (xi)

F (xi)
N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

n
∑

k=1
k 6=i

F (xk)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

If i 6= I, then the application of Lemma 1.1 with α = F (xi)
F (xI) implies that

lim
N→∞

ρii is equal to 0.

If i = I, then we have

lim
N→∞

ρii = lim
N→∞

N

F (xI)

F (xI)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

n
∑

k=1
k 6=I

F (xk)N

F (xI)N

n
∑

k=1

F (xk)N

F (xI)N

.

The application of Lemma 1.1 with α = F (xk)
F (xI) a total of n− 1 times implies

that lim
N→∞

ρii is equal to 0.

Thus, for all i, lim
N→∞

ρii = 0. This completes the proof.

Theorem 1.5.

Proof. To show that rational behavior implies that the time-homogeneous, ir-
reducible, ergodic Markov chain (X,P) is resilient, consider (1.18) and (1.19),
which hold because the stationary distribution π has the closed form expression
(1.4). By Definition 1.1, πi > 0 ∀i since the Markov chain is ergodic, N > 0
since the Markov chain is selective, and F (xi) > 0 ∀i since the fitness function is
positive. Hence, ρij 6= 0 ∀i and j, and (X,P) is resilient. Since ωij = ρij 6= 0 ∀i
and j, (X,P) is also opportunistic. This completes the proof.

Theorem 1.6.

Proof. To show that ergodicity is a necessary condition for the time-homogeneous,
irreducible, ergodic Markov chain (X,P) to be resilient and opportunistic, sup-
pose that the chain is not ergodic. Then the chain is either not positive recurrent
(i.e., it is null recurrent or transient) or it is periodic. If the chain is not pos-
itive recurrent, then there exists a zero stationary probability for a state, xi.
Suppose now that the fitness function is perturbed such that the fitness of this
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state, F (xi), becomes the optimal fitness value. Since the stationary probability
of xi is zero, element xi is never visited, and therefore never considered as the
optimizer. We have ρii = ∂πi/∂F (xi) = 0, and hence (X,P) is not resilient. If
the chain is periodic, then the stationary probability distribution does not exist,
and neither resiliency nor opportunism is defined. This completes the proof.
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