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Argument for using P2

Retroviruses and lentiviruses incorporate two single strands of mRNA into each capsid. 
In brief, the need to use P2 in Eq. 6 arises from this fact that 2 mRNA molecules are 
incoporated into each virion produced from an infected cell.
Thus, there are 3 possible types of virion that can be produced from an ID cell:

wild-type HIV-1 virion containing:                      1 VRNA + 1 VRNA  
therapeutic crHIV-1 virion containing:               1 VT

RNA + 1 VT
RNA

heterozygous virion containing:                           1 V RNA + 1 VT
RNA

where:
HIV-1 full-length mRNA     =   V RNA

crHIV-1 full-length mRNA            =    VT
RNA

Thus, there is some loss of resources that must be accounted for when considering the ratio of 
HIV-1 to crHIV-1 virions produced from an ID  cell.  Experiments show that various genetic 
engineering techniques (removal of the splice sites from the crHIV-1 vector and increasing 
crHIV-1 mRNA half-life; discussed in the text) can boost the cytoplasmic concentration of 
crHIV-1 mRNA relative to HIV-1 mRNA.  Eq. 6 effectively assumes that P describes the increase in 
production of VT

RNA  relative to VRNA  in an ID  cell.  So, the proportion of mRNA in an ID  cell by:
 
VRNA + P VT

RNA = 1
To determine the proportion of interacting RNA pairs we can assume a binomial distribution and
square this equation to obtain:JVRNAL2

+ 2  P  JVRNAL  JVT
RNAL + P2  JVT

RNAL2
= 1

It is clear that the proportion of interacting crHIV-1 RNA pairs is P2 times the proportion 
of interacting HIV-1 RNA pairs.  Thus, for every HIV-1 virion produced from an ID cell, P2 crHIV-1 
virions are produced from that same ID cell. I.e.:

V : VT = 1 : P2

Thus Eqs. 3 & 6 are:

V
◊

= n d I + 1 D n d ' ID - c V @3D
V

◊

T = P2
 D  n  d '  ID - c VT @6D  

(The coefficient of 1 has been added in Eq. 3 for clarification)
But we have not yet accounted for the production of heterozygous virions.
An et al. (1999) found that infectivity of HIV-1 based heterozygous virions is highly 
diminished due to a block in the life-cycle that is pre-integration but post-entry. They  
hypothesized that the block occurs during reverse transcription (RT) because the RT enzyme 
jumps between the 2 heterozygous RNA strands and a type of destructive interference occurs 
creating a non-viable cccDNA that cannot integrate into the host genome.
Thus, there can be 3 fates for a heterozygous virion produced from an ID cell upon infection of a
T cell: 

1) The VRNA strand goes through RT and an HIV-1 cccDNA is produced
fl the heterozygote is effectively an HIV-1 virion

2) The VT
RNA  strand goes through RT and an crHIV-1 cccDNA is produced

fl the heterozygote is effectively a crHIV-1 virion
3) A non-viable cccDNA is produced

fl the heterozygote dies

In order to account for heterozygous virions we must examine the middle term 2 P IVRNAL HVT
RNA L

which describes the proportion of heterozygous virions produced. 
If we the unrealistic assumption that all the heterozygous virions produce HIV-1 cccDNA
then we essentially have:

V : VT = H1 + 2 PL : P2

whereas, making the equally unrealisitic assumption that all heterozygous virions produce crHIV-1 
cccDNA yields:

V : VT = 1 : H2 P + P2 N
Since both of these events are likely occuring we can write an interpolation:

V : VT = H1 + 2 P QL : HH2 PL HL - QL + P2 N
where L ≤ 1 is the proportion of heterozygous virion that survive while Q ≤ L is a
proportion of heterozygous virions that produce HIV-1 cccDNA. The results of An
et al. (1999), that heterozygous virions are non-viable, imply that L is very small 
(L << 1 fl Q << 1), thus, here we make the simplifying, and conservative, assumption that:

V : VT = 1 : P2
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Derivation of F(d,n) from in vivo data of 
G. Funk (2003)
By assuming d ' = Dµd  we are assuming that HIV-1 gene products kill the infected cell and that 
decreased expression of these genes correlates 1:1 with decreased mortality of the infected cell.
Another possiblity is that the correlation is not 1:1.
G. Funk (2003) analyzed drug treatment data from 40 HIV-1 positive patients and 
showed that the burst size (n) correlates with cell death rate (d). They determined the 
correlation parameters for d vs. nd via nonlinear regression to data: 
d  = a µ n + b  
where a = 4 µ 10-4 and b = 0.21
(Funk's other parameter values were 10 fold greater than ours so we take  a = 4 µ 10-3

and b = 0.021)

In the expanded crHIV-1 gene therapy model, the death rate for an ID cell is d' = F(d, n)µ d 
and the HIV-1 burst size from ID cells is Dn. 
Thus:
d ' = a µ Dn + b 
or

FHd , nL = aDn + bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd

Using d' = F(d,n)µ d (i.e. d' = aDn + b ) in place of d ' = Dµd  
does not visibly alter the results, since d ' cancels out of all
steady state equations, except ID (as explained in the next section).
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d' cancels out of all steady state 
equations (except ID )
The steady state equations for ID

ÿ
, V

ÿ
 and V

ÿ

T (the only equations in which F(d,n) appears)
are:

ID
êêê

= 1ÅÅÅÅÅd'  k Vêêê IT
êêê  

Vêêê
= 1ÅÅÅÅc  Hn d Iê + D n d ' ID

êêê L 

VT
êêêê

= 1ÅÅÅÅc  HP D n d ' ID
êêêL

It is clear that d ' appears in the numerator in VT
êêêêê  and Vêêê  equations and in the denominator in

the ID
êêêê  equation. Thus, d ' cancels out of the term d' ID

êêêê .
So, d '  appears only in the steady state equations for ID and not in the VT

êêêêê  or Vêêê  equations.
Furthermore, since ID does not explicitly appear in any other equations we can be assured 
that d '  does not appear in the steady states on any other equation in Eqs. 1-6.
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Accounting for viral loss 
due to infection
Basic Model (with viral loss due to infection)

T
ÿ

= l - d T - k V T

I
ÿ

= k V T - d  I

V
ÿ

= n d I - c V - k V T

The term in bold (viral loss due to infection) is omitted from the Basic Model because 
it is a low probability event (k is small); this omission is the standard, accepted form of the 
Basic Model. 
Also, inclusion of this term does not change the results at all.

crHIV-1 model (with viral loss due to infection)

T
ÿ

= l - d T - k V T - k VT  T

I
ÿ

= k V T - d  I

IT
ÿ

= k VT T - d IT - k V IT

ID
ÿ

= k V IT - d ' ID

V
ÿ

= n d I + D n d ' ID - c V - k  V  IT - k V T

VT
ÿ

= P2  D n d ' ID - c VT - k  VT  T

Including  k  VT  T  and  k  V  T  make  absolutely  no  difference  in  the  results
while  including  k  V  IT  makes  only  a  small  quantitative, but no qualitative
change in the result.
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crHIV-1 super-infection of IT cells
HIV-1 nef downregulates CD4 thus not allowing for HIV-1 superinfection.
But crHIV-1 can infect a cell multiple times since it does not encode nef.
For simplicity, we have limited our consideration to the case of crHIV-1 dual infection 
(i.e. superinfection of 2 crHIV-1).

We consider 2 variations of super-infection:

Model 2 where superinfection produces a different species of dually infected cell, a cell that 
has altered P and D values.

Model  1  Hsuperinfection leads to ID  cellsL
T
◊

= l - d T - k V T - k VT  T

I
◊

= k V T - d  I

IT
◊

= k VT T - d IT - k V IT - k VT  IT

IT2
◊

= k VT IT - d IT2 - k V IT2

ID
◊

= k V IT + k V IT2 - d ' ID

V
◊

= n d I + D n d ' ID - c V

VT
◊

= P2  D n d ' ID - c VT

The schematic below describes Model 1.
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Results  from  superinfection  Model  1  are  identical  to  Eqs.
1-6.

Model 2Hsuperinfection produces a different species of
dually infected cell, a  cell  that  has  altered  P  and  D  valuesL

T
◊

= l - d T - k V T - k VT  T

I
◊

= k V T - d  I

IT
◊

= k VT T - d IT - k V IT - k VT  IT

IT2
◊

= k VT IT - d IT2 - k V IT2

ID
◊

= k V IT - d ' ID

ID2
◊

= k V IT2 - d " ID

V
◊

= n d I + D n d ' ID + D2  n  d " ID2 - c V

VT
◊

= P2  D n d ' ID + H2 PL2  D2  n d " ID2 - c VT

since there are 2 copies of the crHIV–1
genome in ID2 cells
P Ø 2 P
and
D Ø D2

where
D § D2 £ 2 D  and  d " = D2  d

The schematic below describes Model 2.
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Results from superinfection Model 2 show significantly improved HIV-1 set point
reduction compared to Eqs. 1-6.
Thus, crHIV-1 superinfection, which is likely to occur, improves therapy and 
Eqs. 1-6 appear to be a lower limit of therapeutic efficacy.

Derivation of R0
T

The basic reproductive ratio, R0 , is defined as the number of secondary infections from a single
infected cell, assuming that virtually all cells are uninfected (i.e. T

ÿ
= l - d T  fl Têê

= lÅÅÅÅd  ).
A simple derivation of R0 from the basic model of HIV-1 in vivo dynamics is as follows:

R0 = target cell density   ¥   burst size   ¥   infection rate constant   ¥   average lifetime of the virus

     =      
lÄÄÄÄd       ¥      n        ¥            k                ¥             1ÄÄÄÄc      

For the crHIV-1 gene therapy model we defined a new R0 for the crHIV-1 virus, R0
T , defined

as the number of secondary crHIV-1 infections obtained from a single crHIV-1 infection assuming
that virtually all cells are uninfected by crHIV-1 but that the system is at steady state for HIV-1 
infection (i.e. steady state for the basic model of HIV-1 in vivo dynamics:  

Têê
= cÅÅÅÅÅÅÅk n , Vêêê

= n lÅÅÅÅÅÅÅc - dÅÅÅÅk , Iê = lÅÅÅÅd - c dÅÅÅÅÅÅÅÅÅÅd k n ).

When R0
T ¥ R0  crHIV-1 infection will persist, when R0

T < R0 crHIV-1 infection will die.

In order to derive the new R0
T we segment the infection process into 2 components: 

1) crHIV-1 infection of T cells 
                and 
2) HIV-1 infection of IT cells.

The 1st component will yield roughly the density of IT target cells for the 2nd component.

1)
target cell density for crHIV-1   ¥  crHIV-1 burst size   ¥   crHIV-1 infectivity  ¥  crHIV-1 lifetime

                 HTèè
= cÄÄÄÄÄÄÄÄk n L ¥ P2  Dn ¥ k ¥ 1ÄÄÄÄÄc  

             
              =  P2

 Dd '

Essentially this is the l value for the IT cell population.
This is the IT "target" cell density except that we have not accounted for the death rate
of IT cells (these cells die at a per cell rate of d). We now acount for the average lifetime 
of IT cells to find the actual target cell density:HP2  Dd ' µ 1ÅÅÅÅÅd L
2)

  IT  "target" cell density   ¥   HIV-1 virus density   ¥   HIV-1 infectivity 

         IP2  Dd ' ¥ 1ÄÄÄÄÄd M      ¥    V
èè

= n lÄÄÄÄÄÄÄÄc - dÄÄÄÄÄk        ¥           k

             =       P2  D  I n l kÄÄÄÄÄÄÄÄÄÄÄd c - 1M
             
             =    P2  D  HR0 - 1L                    [ z ]

                
But, in order, for crHIV-1 to persist we require R0

T ≥ R0  or  R0
T

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄR0
≥ 1 .

(This can be explained by considering the predator-prey model of 2 predator species 
competing for the same prey.  Except in special cases, the principle of competitive exclusion 
applies, the species with the greater R0 outcompetes or excludes the other predator 
species. Here, in our crHIV-1 model, if R0 > R0

T then HIV-1 outcompetes crHIV-1 and
excludes crHIV-1. But if the opposite is true R0

T > R0 then crHIV-1 is not excluded
but will never outcompete or exclude HIV-1 since crHIV-1 replication depends on HIV-1).
 
Thus, we divide Eq. z above by R0 and define R0

T  as:

R0
T = P2  D  I1 - 1ÄÄÄÄÄÄÄR0

M
When R0

T ¥ 1 crHIV-1 infection will persist in vivo, otherwise it will die out.
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Below R0

T was plotted relative to parameters P and D.  The graph is cut-off at 1 on the z-axis, in 
order to emphasize the transition R0

T >1.  The red and blue shading is added in order compare R0
T

to regimes where crHIV-1 is either unstable or stable. The red region corresponds to a regime where 
all eigenvalues of the Jacobian for Eqs.1-6 are negative for the solution to the Basic Model—thus 
only HIV-1 is stable (crHIV-1 is unstable and in fact a non-physical solution).  The blue region 
corresponds to a regime where all eigenvalues of the Jacobian for Eqs.1-6 are negative for the 
solution to the expanded model—thus crHIV-1 is stable (the Basic Model solution is unstable). The 
purple spikes are a numerical anomaly and are irrelevant.  The transcritical bifurcation (transition 
from red to blue) corresponds with R0

T =1. The regime where crHIV-1 is stable (blue) corresponds 
to regime R0

T > 1.
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Stability Analysis (Jacobian)
The Jacobian for Eqs. 1-6 has the form:i
k
jjjjjjjjjjjjjjjjjjjjjjjjjjj

-d - Vêêê k - VT
êêêê k 0 -Têê k 0 0 -Têê k

Vêêê k -d Têê k 0 0 0
0 n d -c 0 n D d d£ 0

VT
êêêê k 0 -IT

êêê k -d - Vêêê k 0 Têê k
0 0 IT

êêê k Vêêê k -d d£ 0
0 0 0 0 n D P2 d d£ -c

y
{
zzzzzzzzzzzzzzzzzzzzzzzzzzz

where bar above the state variable denotes the steady state value for that state variable.
Below are graphs of the largest Eigenvalue of the Jacobian for the Basic Model steady state 
(i.e. only HIV-1 present) as well as the steady state when the crHIV-1 solution persists.

Red = HIV-1 stable, Blue = crHIV-1 Therapy Virus stable, Black = Unstable
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If P  is increased there is a Hopf bifurcation and a region of instability arises (black region):
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Red = HIV-1 stable, Blue = crHIV-1 Therapy Virus stable, Black = Unstable
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A subregion of the plot (D < 0.05 ) explains the transitions between different stable regions and 
between stable and unstable regions:
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Red = HIV-1 stable, Blue = crHIV-1 Therapy Virus stable, Black = Unstable
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Distributed Delay Model
Here we incorporated distribued delays (box-car method) into Eqs. 1-6. Using the 
equations below were performed simulations in Berkeley Madonna Diff. Eq. solving 
software (http://www.berkeleymadonna.com/) to obtain Fig. 3.

We incoporate 2 delays here. The viral eclipse phase describes the delay between HIV-1 
infecting a target cell and converting this cell to a productively infected cell (T Ø I Ø Im , 
where Im  describes cells producing HIV-1). In addition there is another viral eclipse phase 
after HIV-1 infects a crHIV-1 therapeutically infected cell. This crHIV-1 eclipse 
phase is the delay that between HIV-1 infecting an IT  cell and that cell becoming an ID  cell 
that produces both HIV-1 and crHIV-1 HIT Ø ID Ø IDm , where IDm  describes cells
producing  HIV–1 and crHIV–1L . We assume for simplicity that both of these viral 
eclipse phases (delays) are equivalent (so the delay for T Ø I Ø Im  is equal to the delay for 
IT Ø ID Ø IDm ). For simplicity we assume that any delay between crHIV-1 infecting the cell 
and that cell becoming a therapeutically infected cell (T Ø IT ) is relatively short compared to 
the HIV-1 viral eclipse phase. 
Thus, we neglect this T Ø IT  delay in the model below.
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T
◊

= l - d T - k V T - k VT T

I1
◊

= k V T - b I1

I2
◊

= b HI1 - I2L
...
Im

◊
= b Im-1 - d Im

IT
◊

= k T VT - d IT - k V IT

ID1

◊
= k V Tt - b ID1

ID2
◊

= b HID1 - ID2L
...
IDm

◊
= b IDm-1 - d ' IDm

V
◊

= n d Im + D n d ' IDm - c V

VT
◊

= P2 D n d ' IDm - c VTHin the simulation used to produce Fig. 3
b = 16 and m = 30 was used, all other parameters are as in Table 1L

Expanding other Basic Model
architectures to incorporate a
crHIV-1 gene therapy virus

ü Incorporating an immune response
The Basic Model does not account for immune processes (such as CD8+ cytotoxic
T lymphocytes) controlling viral load by encountering HIV-1 infected cells and killing
them. Immune recognition occurs because HIV-1 proteins and protein fragments are
presented on the membrane of infected cells. 
Here we incoporate an immune response into the crHIV-1 model.
Immune cells (Z) kill HIV-1 productively infected cells at a per cell rate k
and kill productive ID cells at per cell rate k'.  Immune cells also die at a rate dZ .
Cells infected only with crHIV-1 are not recognized by immune cells because they
do not express HIV-1 proteins that can be presented on the cell membrane. 
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T
◊

= l - d T - k V T - k VT T

I1
◊

= k V T - b I1

I2
◊

= b HI1 - I2L
...
Im

◊
= b Im-1 - d0 Im - k Z Im

IT
◊

= k T VT - d IT - k V IT

ID1

◊
= k V Tt - b ID1

ID2
◊

= b HID1 - ID2L
...
IDm

◊
= b IDm-1 - d0 ' IDm - k ' Z IDm

V
◊

= n d Im + D n d ' IDm - c V

VT
◊

= P2 D n d ' IDm - c VT

for  completeness  we  tried  a  variety  of  functions  to  describe
how  Z  cells  are  activated  HaL
Z
◊

= a Im - dZ  Z
or
Z
◊

= a HIm + IDm L - dZ  Z
or
Z
◊

= a Z HIm + IDm L - dZ  Z
or
Z
◊

= a - dZ  ZH as above we used b = 16, m = 30, a and k were calculated so that
steady state was the initial condition for the simulationsL

None of these models affect the qualitative behavior of the
crHIV–1 gene therapy model because crHIV–1 converts
the susceptible cell population T into a different reservoir of
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crHIV–1 transduced cells. Thus, the crHIV–1 effect on
HIV–1 can be roughly mimicked by decreasing l or increasing d
in the Basic Model.

ü Models with logistic T cell growth
Since the robust qualitative affect of crHIV-1 introduction 
depends upon the growth characteristics of the T reservoir 
(i.e. parameters l and d), we explored the effect of altering this
growth rate.  Logistic growth is commonly used in biological models to 
describe population grwoth in a more realistic manner than constant or 
exponential growth, since it assumes a limitation of resources and limits
population growth aboce a set threshold value. Logistic growth has been 
considered in the context of the Basic  Model (Nelson and Perelson, 1999), 
but is usually assumed to have a small affect and is thus ignored.  We 
explored two forms of logistic growth, for T cells, into the Basic Model: a 
form that limits growth when only T cells approach the threshold value Tmax and
a form that limits growth when T + IT approaches the threshold Tmax . 
Tmax was assumed to be between 2000 and 4000 cells/ml of blood.
We performed dynamic simulations using the distributed delay model above 
since algebraic steady state analysis was not practical. The equations are as above in
the distributed delay section except that the T equation is as follows:

T
◊

= l + r T I1 - TÄÄÄÄÄÄÄÄÄÄÄÄTmax
M - d T - k V T - k VT T

or

T
◊

= l + r T I1 - T+ITÄÄÄÄÄÄÄÄÄÄÄÄÄTmax
M - d T - k V T - k VT T

We tested an array of r values between 0.001 - 0.1
and an array of Tmax values between 2000 - 4000 cells ê mL.

The decrease in HIV-1 set point was not qualitatively
affected by either of these alterations to the model.

Figures using other parameter values (c = 3.0)
The Figures below are identical for Fig. 2 except that steady states were calculated using 
c = 3.0 day-1  instead of c = 30.0 day-1 . 
All other parameter values are as in Table I
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