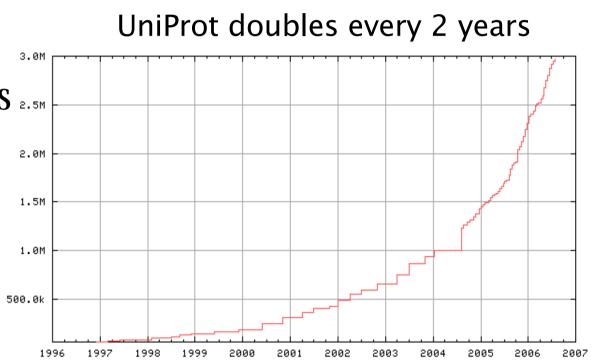
Scalable Analysis of Microbial Genomes

Morgan Price Arkin lab October 2006

Identifying Similar Sequences

Sequence to sequence (BLAST)

,	100%	transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Escherichia coli 0157:H7 EDL933	Cart	*
>	100%	transcriptional repressor for pur regulon	Escherichia coli O157:H7	Cart	
,	100%	transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Shigella flexneri 2a str. 2457T	Cart	
2	100%	PurR (<u>see papers</u>)	Shigella boydii Sb227	Cart	
)	100%	DNA-binding transcriptional repressor, hypoxanthine-binding	Escherichia coli W3110	Cart	
,	99.71%	PurR	Shigella dysenteriae Sd197	Cart	
,	99.71%	transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Shigella sonnei Ss046	Cart	
2	99.71%	purine nucleotide synthesis repressor	Escherichia coli UTI89	Cart	
2	99.41%	Purine nucleotide synthesis repressor	Escherichia coli CFT073	Cart	4
,	95.89%	transcriptional repressor for pur regulon, glyA, glnB, prsA, speA (GalR/Lacl family)	Salmonella typhimurium LT2	Cart	
,	95.89%	transcriptional repressor for pur regulon, glyA, glnB, prsA, speA (GalR/Lacl family)	Salmonella enterica Choleraesuis	Cart	
2	95.6%	purine nucleotide synthesis repressor	Salmonella enterica, Typhi	Cart	
2	95.6%	purine nucleotide synthesis repressor	Salmonella enterica, Typhi Ty2	Cart	
)	95.6%	purine nucleotide synthesis repressor	Salmonella enterica Paratyphi A	Cart	


Sequence to family (InterPro,HMMer)

VIMSS776892: Putative ribose operon repressor, rbsR (NCBI), 333 a.a. [Photobacterium profundum SS9]						
IPR000843 IPR type: Domain Bacterial regulatory protein, Lacl	SMART: SM00354 [171] Pfam: PF00356 [227] ProfileScan: P550932 [256] FPrintScan: PR00036 [313] ScanRegExp: PS00356 [422] FPrintScan: PR00036 [1323]					
IPR001761 IPR type: Domain Periplasmic binding protein/Lacl transcriptional regulator						
IPR010982 IPR type: Domain Lambda repressor-like, DNA-binding	Superfamily: SSF47413 [358]					
No IPR id: NULL: seg Info on InterPro	-=					

=> gene's function & evolutionary history

A Rapidly Growing Challenge

- MicrobesOnline has 360 genomes
- Coming soon:
 - ~1,000 more genomes
 - gigabases from metagenomics

- Computation time already problematic
 - delayed updates, supercomputers

Slow Sequence Analysis Tools

- detect homology with all-vs.-all BLASTp
 - O(N²) time and storage
 - already 1,000 hits/gene
 - low biological relevance
 - mostly weak hits within known families (~50 bits)
 - no phylogeny
- assign to protein families with HMMs
 - O(N) but slow (>1 CPU-day/genome)

Solutions

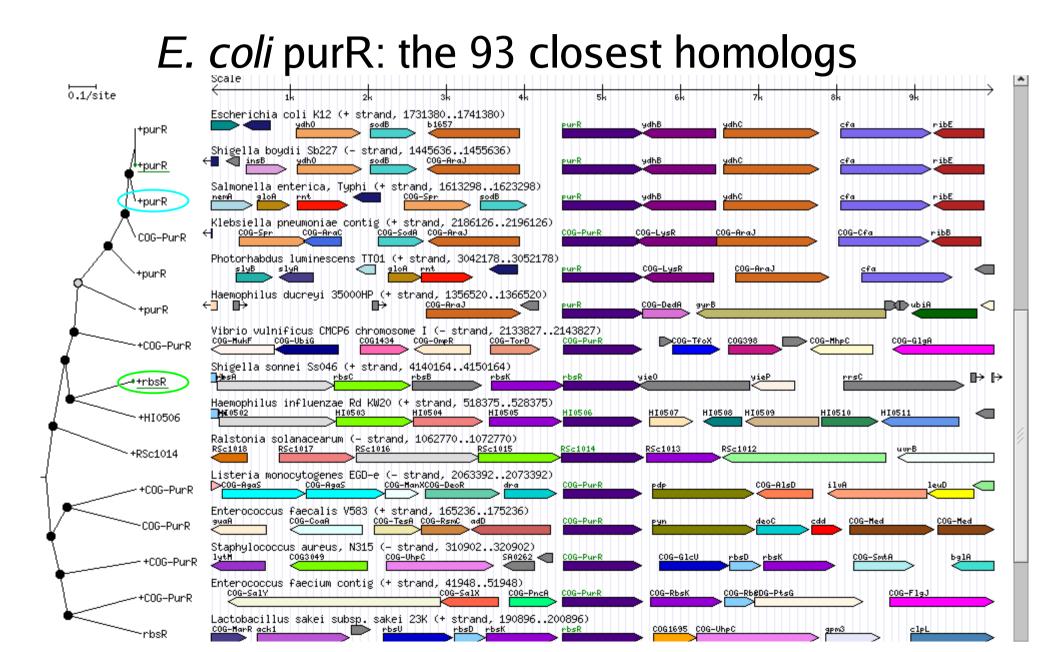
- How to view 1,000 homologs
 - Tree-browser
- Fast family assignment with HMMFast
 combine PSI-BLAST & HMMs
- Fast detection & compact storage of homology
 rely on known families to avoid most BLASTing

What's Wrong with BLAST hits

transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Escherichia coli O157:H7 EDL933	Cart	-
transcriptional repressor for pur regulon	Escherichia coli O157:H7	Cart	
transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Shigella flexneri 2a str. 2457T	Cart	
PurR (<u>see papers</u>)	Shigella boydii Sb227	Cart	
DNA-binding transcriptional repressor, hypoxanthine-binding	Escherichia coli W3110	Cart	
PurR	Shigella dysenteriae Sd197	Cart	
transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Shigella sonnei Ss046	Cart	
purine nucleotide synthesis repressor	Escherichia coli UTI89	Cart	
Purine nucleotide synthesis repressor	Escherichia coli CFT073	Cart	1
transcriptional repressor for pur regulon, glyA, glnB, prsA, speA (GalR/Lacl family)	Salmonella typhimurium LT2	Cart	
transcriptional repressor for pur regulon, glyA, glnB, prsA, speA (GalR/Lacl family)	Salmonella enterica Choleraesuis	Cart	
purine nucleotide synthesis repressor	Salmonella enterica, Typhi	Cart	
purine nucleotide synthesis repressor	Salmonella enterica, Typhi Ty2	Cart	
purine nucleotide synthesis repressor	Salmonella enterica Paratyphi A	Cart	
Transcriptional regulators [Transcription]	Klebsiella pneumoniae	Cart	
purine nucleotide synthesis repressor	Yersinia pestis CO92	Cart	
transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Yersinia pestis KIM	Cart	
purine nucleotide synthesis repressor	Yersinia pseudotuberculosis IP 32953	Cart	
purine nucleotide synthesis repressor	Yersinia pestis biovar Medievalis str. 91001	Cart	
transcriptional repressor for pur regulon, glyA, glnB, prsA, speA	Shigella flexneri 2a str. 301	Cart	•

E. coli purR

- All 20 top hits are from close relatives
 Escherichia, Shigella,
 Salmonella, Klebsiella,
 Yersinia
- No relatedness
- Little information


(*if you know the genus names*)

Tree-browser Principles

- Collapse closely related clades so more distant homologies can be seen
 - You can adjust how much to collapse & to show
- Highlight characterized relatives
- Compare domain tree to species tree

Available at http://MicrobesOnline.org

Tree-browser Example

Tree-browser Example

0.1/site

Gene tree

0.1/site

+purR, Escherichia coli K12	-1
👌+purR, Shigella boydii Sb227	-2
🔊+purR, Salmonella enterica, Typhi	-3
COG-PurR, Klebsiella pneumoniae contig ——	-4
✓ →+purR, Photorhabdus luminescens TTO1	-5
+purR, Haemophilus ducreyi 35000HP	-6
∠ → +COG-PurR, Vibrio vulnificus CMCP6 chr.I —	-7
↓+rbsR, Shigella sonnei Ss046	-8
+HI0506, Haemophilus influenzae Rd KW20	-9
+RSc1014, Ralstonia solanacearum	-10
+COG-PurR, Listeria monocytogenes EGD-e	-11
	-12
++COG-PurR, Staphylococcus aureus, N315	-13
+COG-PurR, Enterococcus faecium contig	-14
rbsR, Lactobacillus sakei subsp. sakei 23K	-15

Species tree purR & rbs R

0.1/site	
Escherichia coli K12 (2 genes)	
Escherichia coli W3110 (2 genes) 2,8	
Other Shigella (4 species) (8 genes) 1,2,8	
Shigella dysenteriae Sd197 (2 genes) 1,8	
Other Escherichia coli (2 species) (4 genes) —2,8	
Other Escherichia coli (2 species) (4 genes) —1,8	
∧ ^N Salmonella (5 species) (9 genes) — — — <mark>3,8</mark>	
∫ ^I Klebsiella pneumoniae (2 genes) 4,8 /	
Other Enterobacteriaceae (6 species) (8 genes) 5,8	
neither Sodalis glossinidius str. 'morsitans'	
Counter Enteropacteriaceae (6 species)	
Pasteurellaceae (5 species) (9 genes) 6,9	
Cother Vibrionaceae (6 species) (12 genes) 7,8	
Other Shewanella (3 species)	
Other Alteromonadales (3 species)	
$\int \sqrt{0}$ ther Gammaproteobacteria (9 species) (7 genes) - (10)	
Moraxellaceae (2 species)	
Other Gammaproteobacteria (17 species)	
Other Betaproteobacteria (8 species) Burkholderiaceae (9 species) (7 genes)	
	2
Other Burkholderiales (5 species)	
-Other Bacteria (126 species)	
Other Bacteria (9 species)	
Mollicutes (16 species)	
Bacillaceae (14 species) 	
Enterococcus (2 species) (3 genes) — 12,14 Streptococcaceae (17 species)	
/ Other Lactobacillus (2 species) (1 gene) 14	
Lactobacillus sakei subsp. sakei 23K (1 gene)	
Other Lactobacillus (2 species)	
concil Europhonitide (2 opcorce)	*

Available at http://MicrobesOnline.org

Tree-browser Implementation

- Pre-computed tree for every family
 - every Pfam, every COG, and ad-hoc BLAST families for the rest
 - covers >90% of proteins
- Pre-computed species tree
 - from ubiquitous COGs
 - supertree of maximum-likelihood trees

Limitations of Families

Gene tree for VIMSS82 AM420: hypothetical p from Anaplasma margin	orotein, 487aa						Help	
Tree: Domain us PF07690	ed aa 66-432 (1 .▼	<i>Range</i> aa 66-432 (133)	#Domains 8855	#Shown 9	<i>Cluster?</i> ≥ 80% id. ▼	#Clusters 3	≤ 25	the
str. St. Ma Drawing: □ Rectan	BLAST hits for this gene tries (73.64% identity ove gular style? ☑ Use bran ly COG & orthologs of 1s	<mark>er 440 a.a.).</mark> St ch lengths? ∏	top checking Overlappin	BLAST hit	s		sma marginale	 BLAST
Update Reset								
Gene Tree		Gene Co	ntext			Or view sp	ecies tree	
Click on genes or clusters	Move <-Le Scale Anaplasma marginale str PbpA2 Versinia pestis CO92 (- COG-CitB Pseudomonas syringae (- COG-GntR	2k . St. Maries - strand, 1788 3122 \VP01574	7371798737	4k 78270388; PR41 CO)		6k COG-NorM COG-FabG COG-FabG COG-F	7k 8k mcd arg6 Fab6	

Close homologs (74% id.) in different families

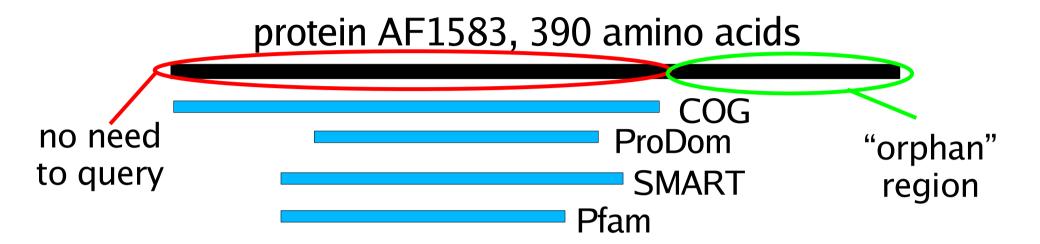
Tree-Browser Summary

- Quick access to phylogeny
 - Helps you choose interesting homologs to show
 - Reduces information to manageable size
- Still need to
 - Place genes in known families
 - Group genes not in known families
 - Find the problems with families

HMMFast

- PSI-BLAST is fast, HMMer is accurate
 - HMMer aligns every sequence to every family
 - Sensitive, but slow
 - PSI-BLAST starts with high-scoring hits to profile
 - much faster, but ~15% worse sensitivity/specificity
- Combination
 - Step 1: PSI-BLAST with high sensitivity settings
 - Step 2: run HMMer to remove false positives

HMMFast's Performance


		# Test	HMMer	PSI-BLAST	PSI-BLAST	Fast hrs	% of HMMer
Database	# HMMs	Genomes	CPU hrs	CPU hrs	% with hits	(predicted)	Hits Missed
Pfam	,			•	. %	•	-
TIGRfam	,			•	. %		•
Supfam	3			•	. %	•	•

- 50-100x faster, >98% sensitivity
- Misses are concentrated in *th* eak["] HMMs
 - half of missing Pfam hits are for families in which a seed sequence has E > 0.01 (!)

So Far

- Tree browser
- HMMFast
- Still need BLAST to find ad-hoc domains
- Might need BLAST to find missing family members

Beyond All-vs.-all BLAST

- Use known families
 - cover ~80% of amino acids
- Add ad-hoc "domains"
 - list of hits for an "orphan" region

Reduce Size of Problem

MicrobesOnline Break-down

Mill	lions of a.a
Total	
Domains	■
@ %	■
Orphans	■
@ %	
Spacers	■

- Shrink database by 2.5x
 - Fast O(N²) clustering within each family (CD-HIT)
 - Also cluster orphan regions
- Shrink query by 7.2x
- 2.5 x 7.2 = 18x faster
 - ${\sim}1$ CPU-day to preprocess
 - ~3x more by not querying members of new families?

Reconstructing BLAST Scores from Domains

- List of domains (including ad-hoc domains)
- => List of genes sharing a domain
- => Rerun BLAST on the small set

Takes ~1 sec./query vs. ~30s on full DB

Performance of Domain-masked BLAST

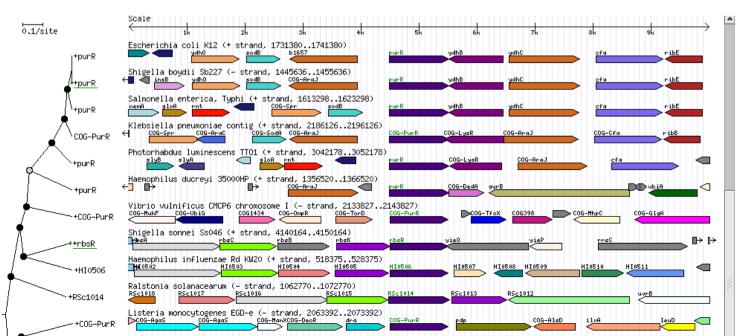
- 10 test genomes
- Miss 0.24% of homologous pairs of genes
 - only 0.01% of hits of 70 bits or better
 - worst miss is 110 bits (37% id., 182 a.a.)
- Only 0.03% of genes become orphans
- Only 25 domains/gene
 - almost all known families

Not Quite O(N)...

O(N²) Steps Left

- CD-HIT within each family, orphans (fast)
- Domain-masked BLAST
 - Grows slower than N², because of CD-HIT
 - Shrink as families improve?
 - Skip for largest datasets (metagenomics)
- Multiple sequence alignment can be O(N)
- Phylogenetic trees...

Remaining Challenges


- Scalable phylogenetic trees
 - large families already contain thousands of members
 - existing methods: fast $O(N^3)$ or slow $O(N^2)$
 - no incremental update
- Tree-based orthologs
- Improved domain family curation
 - automatic splitting
 - build PSI-BLAST models of larger ad-hoc families

Conclusions

Ready for 1,000 genomes

- Tree-browser summarizes a gene's history
 Available at MicrobesOnline.org
- Fast family assignment, pairwise homology

- HMMFast going into the analysis pipeline (Keith)

