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1. Interacting Networks Inside and Outside the Cell
Systems biology brings ideas from engineering disciplines such as control theory and
signal processing into molecular biology at the level of interaction networks or pathways.

Interesting details:

• Biological phenomena occurring in a living cell span over 8 orders of magnitude in
space

• In addition: broad range of time scales

• Mixture of populations with different copy-numbers (high and low)

• Uncertainty in parameters due to the current limitations of experiential techniques

Goals:

• Call for hybrid and /or multi-scale
simulation techniques

• Uncertainty must be incorporated
into the simulation procedure as an
inherent part of the process
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2. Classical Reaction Kinetics

S1 + S2
kr→ S3,

νr = (−1,−1,+1)

From [TKurtz71,DTGillespie2001]:

RandomCollisions + Well mixed + Large Populations⇒ ClassicalChem.Kinetics, (1a)

dXi

dt
=

R∑
r=1

νirkrhr({Xi}), Xi(t) ∈ R (1b)

• Simulations can be casted in terms of ODEs

• Classical CK works for conventional problems but biochemical networks have
stochastic effects as an intrinsic part of the problem.
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3. Stochastic Chemical Kinetics
In classical CK proteins are discrete objects, yet their effects are often modeled in terms
of concentrations. This dichotomy must be resolved.

Populations are discrete and reaction events are random:

S1 + S2
kr→ S3

Now:

P (X1 − 1, X2 − 1, X3 + 1, t + ∆t|X1, X2, X3, t) = krh(X1, X2)∆t + O(∆t2), (2)

Xi(t) = Xi(0) +

R∑
r=1

νirNr(t)︸ ︷︷ ︸
counter

(3)

Reaction counters Nr(t) are random and state dependent (think of 20$ “Rolex”)
Simulation technique:

• “Well-mixed” assumption is still important

• Kinetic Monte Carlo/Stochastic Simulation Algorithm [Bortz et.al.75, DTGillespie76]
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4. Well-mixed Assumption: Reality or Fiction?
Importance of diffusion effects was known for a long time but was usually downplayed.

• The Stocks-Einstein relations implies slow liquid phase diffusion for many signal
proteins

• Aspects of cell’s physiology depend on the spatial signal range of secreted molecules

• “Join the Crowd” (cells are packed with proteis, complex sugars and nucleic acids )

• Most of the parameters required for the successful use of the current simulation
techniques are not directly accessible from the experiments
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5. Kinetic Rates
• the rate of reaction for proximate molecules, “intrinsic” k0

• the facility with which molecules can diffuse

Kinetic rate [Smoluchowski35,Szabo89,AgmonSzabo91]:

k(t)|t→∞ ≈
k0kD
k0 + kD

, (4)

k0 − intrinsic binding rate, kD = 4πDrσ

k(t) =

{
kD, if k0 � kD
k0, if kD � k0

(5)

• Reversible reactions are “many body problems” [AgmonSzabo91,SAndrews2004]
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6. Two poles of the (computational) world

6.1. Space

Spatial dynamics of the concentration u(t,x)
(PDE):

du/dt = Au︸︷︷︸
D∆u−V∇u

• Discrete finite elements; finite time steps

• Requires adaptive mesh generation

• Boundary conditions included as linear con-
strains

• Solves spectral problem {λn, en(x),x ∈ D}:

Aen(x) = −λ2
nen(x), 〈en, em〉 =

∫
D
dxen(x)em(x) = δnm

Stochastic Brownian dynamics:

dx = a(x)dt + σdw, u(t,x)dx = E(1[x,dx](x(t)))

• Allows to trace motion of individual particles

• Fixed time step, no mesh generation

• Boundary conditions may be tricky to deal with

• Collision detection-> small time step in general
(10−3 r2

σ

D
)



◦First ◦Prev ◦Next ◦Last ◦Go Back ◦Full Screen ◦Close ◦Quit

7. Two poles of the (computational) world(contd.)

7.1. Reaction events

SSA/KMC:

• Construction of N(t) by (SSA/KMC) is ex-
act

• Intensive when close to deterministic
case
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8. Bringing two poles together. . .
...is a hard problem

• Sub-volume method (divide the reaction volume into small ”well-mixed” sub-volumes)
[Gardiner,Stundzia&Lumsden96, Mesord2005,... ]

• Smoluchowski dynamics (discrete time-step)[AndrewsBray2004]

• Smoluchowski dynamics (random-time step): Green Function RD [tenWolde2005].
Method uses analytical results to perform large time steps.

Separation of time scales plays a crucial role.
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9. Signalling Example
System includes species X(diff.), R,XR and Y.

r = 1, 2 : X + R
k1

�
k2

XR, (7a)

r = 3 : XR
k3→ X + R + Y, (7b)

r = 4 : Y
k4→ (. . . ) (7c)

#X = n0, #R = n1, #XR = n2, #Y = n3, n1 + n2 = 1

Typical parameters:
k1 = 3 × 108M−1s−1, k2 = 0.05s−1,D =
0.1µm2/s, h = 1µm, R = 50 µm, κ-
”stickiness” of the walls
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10. Questions
• Is spatial nature of signalling important?

• Are there any delays in signal transmission due to the diffusion?

• What can we gain adding randomness of diffusion into the picture? (Distribution of
signal arrival times)

• Discuss the place of well mixed assumption in this picture
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11. Spectral decomposition
Time scales of diffusion can be characterized via spectral approach and collection of
modes:

∆enm(r, z) = −(k2
n + k2

m)enm(r, z), (8a)

subject to :
∂enm(r, z)

∂z
|z=0,h =

κ

D
enm(r, z)|z=0,h, n,m = 1, 2, . . . , (8b)

λnm = D(k2
n + k2

m) (8c)

• Can be found analytically for a given geometry

• numerically otherwise
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12. Yet another attempt to bring R& D together:
Stochastic PDEs

• It is hard if not impossible to represent the stochastic RD processes in term of the
smooth concentration field u(t,x)

• Discrete noise sources Θ(t,x) are localized in space (near receptor: θ(x) ∝ 1|x<rσ|):

Θ(t,x) = θ(x)

4∑
r=1

ν0r Nr(t)︸ ︷︷ ︸
state depend.

(9)

• Weak solution of SPDE [KullinapurXiong98]; ∀f

〈f, du(t,x)〉 = 〈f,Au(t,x)〉 + 〈f, dΘ(t,x)〉 (10)

If {enm} are orthogonal then we define projected dynamics:

〈enm, u〉 = unm(t), (11)
〈enm, θ〉 = θnm (12)
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13. Some Technical details: Spectral Finite Ele-
ments

• Choose not to model spatial dynamics in details, instead approximate it by the finite
subset of the base functions (n = 1 . . . Nr,m = 1 . . . Nz).

• Result (jump-SDE system Nr ×Nz + 3)

dunm = −λnmunm(t)dt︸ ︷︷ ︸
diff.

+θnm

4∑
r=1

ν0rdNr(t|unm(t−), ni(t−)), (13)

dni(t) =

4∑
r=1

νirdNr(t|unm(t−), ni(t−)), i = 1 . . . 3 (14)

• Diffusion modes {unm(t)} and discrete states n1−3 a coupled through reaction counters
Nr(t) (their intensities).

• System is stiff (λnm grow fast) but simulation can be performed via modofied Direct
SSA (i.e. generate jump time, propagate diffusion modes)

• Error: depends mostly on Nr, Nz
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14. Well-mixed assumption and Spectral Finite Ele-
ments

• As diffusion goes up (D →∞, κ ≈ 0) only low level mode survives: λ00 ≈ 0, θ00 ∝ 1/V

• One recovers “well-mixed” situation in a singular limit
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15. Influence of diffusion and environment
(Nr = Nz = 10)

Delays in signal transduction
(h2/D ≥ (k3 + k1NX/V )−1) Role of the κ
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16. Variance of a signal

Increse of the noise at fi-
nite rates of diffusion at
increased k3
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17. Conclusions
• Biochemical networks process signals in time via distributed / ”wireless” units

• Use of CME is limited for biochemcial networks

• Hybrid simulation can serve as a tool for exploring the sources and nature of the
stochastic behavior
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