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Excursions in Stochastic Dynamics
of Complex Biological Systems

Sergey Plyasunov
SPlyasunov@lbl.gov

August 31, 2004

Abstract

Talk outlines some recent developments in a field of stochastic chemical kinetics and
its applications to the models of biological systems.

Topics:

1. New models of transcriptional regulation in λ-phage system,
2. Robustness of lysogenic state
3. Time scales separation in biochemical networks, rare events;
4. Complexity reduction in models with separation of time scale,
5. Model uncertainties and stochastic simulation

http://http://gobi.lbl.gov/~plserg
mailto:SPlyasunov@lbl.gov
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1. Introduction: Bio-chemical Networks inside the
Cell

• Metabolic (energy, synthesis)

• Regulatory ( infromation process-
ing : control of gene expression,
sensory input signals processing )

http://http://gobi.lbl.gov/~plserg
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Multiscale Systems

• System of many interacting com-
ponents

• Multiple Levels of Organization:

– Molecular ⇐⇒ Cellular ⇐⇒
Population

– Multiple spatial and temporal
scales:

10−8 m 10−6 m 10−3 m
10−7 sec 1 sec 1 hour-1 year

• Non-Equilibrium Steady State:
Conventional Thermodynamics
is not applicable

• Stochasticity at a basal level of
gene expression ⇒ Phenotypic
variability

http://http://gobi.lbl.gov/~plserg
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Example:Many-body Interactions
and Regulation of Gene Expression

• Gene expression is controlled by binding of transcription factor (TF) pro-
teins to the regulatory sites on DNA, blocking/pushing RNAP from/to the
gene.

tataat
−10

  reg
site

ttgaca
−35

reg.
site

RNAP
gene

∆ G RNAP

TF TF

Promoter

DNA

TF

Regulatory site
DNA binding domain

activator

“Key-lock” principle

• Specificity and strength varies from promoter to promoter and from TF to
TF

Promoter −35 Region −10 Region
Consensus ttgaca tataat
trp operon ttgaca ttaact

rec A ttgata tataat

TF protein reg. sequence
CAP ...aagtga tagctgtc...

...tttgttacctgcctc...
LacI ...aattgtgagcggataacaatt...

...aaatgtgagcgagtaacaacc...

...ggcagtgagcgcaacgcaatt...

• Activity of the promoter of the genei depends on the complicated pattern
of regulatory elemens affected by transcription factors {TF}:

genei = Fi(TF1,TF2, . . . ,TFN)

http://http://gobi.lbl.gov/~plserg
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Networks of Interacting Species
Integer vector X is a state vector of species numbers (number of proteins , free regulatory sites,

RNAP,etc):

X3 X +X1 4
−2

−1+1

+2

X +X 1 2

S∑
i=1

ν+
irXi

k+r



k−r

S∑
i=1

ν−irXi (1)

Reaction at each channel changes the state of the system by the vector νr =
(ν−1r − ν+

1r, . . . , ν
−
Sr − ν+

Sr):

X→ X + νr, νr = ν−r − ν+
r

Different classes of problems have different mathematical descriptions:

• Stochastic effects:

∂P (X, t)

∂t
=
∑
r

ar(X− νr)P (X− νr, t)−

−P (X, t)
∑
r

ar(X), (2)

a±r(X) = krV

S∏
i=1

Xi!

(Xi − ν±ir)!V ν±ir

(3)

Eqn. (2) can be solved mostly only by
K(inetic)M(onte)C(arlo)(aka Gillespie
Algorithm [Bortz et al., 1975, Gille-
spie, 1977]).

• Add diffusion effects. . .

• Deterministic mass action
kinetics (systems of non-
linear/stiff ODE’s):

dX

dt
=

R∑
r=1

νrar(X), (4)

a±r(X) = k±rV
∏
i

X
ν±ir
i

V ν±ir
+ O

(
|ν±r |
V

)
(5)

http://http://gobi.lbl.gov/~plserg
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Focus on Stochastic Effects:
Why this research is potentially relevant?

The solution of the DNA structure was the results of the integrated theoretical
modeling and experimental techniques. Since that time, theory /computation
has played probably minor role in biological discoveries.
To overcome this situation traditional simulation techniques must be taken to
the new level.

Evangelism:

• General questions about modeling of complex systems: find a biologi-
cally/biophysically relevant representation.

• Mathematically rigorous and physically consistent, stochastic algorithms
are computationally expensive⇒ corase-graining methods

• How to deal with uncertainties of the model in stochastic/probabilistic
setting?

• Problems which are hard to solve with traditional Monte Carlo methods:
Large deviations, rare events problems, robustness , stability.

http://http://gobi.lbl.gov/~plserg
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2. Models of transcriptional regulation in bacterio-
phage λ

S. Plyasunov, R. E. Osterhout, J.W.Little and A.P.Arkin

Abstract

We develop a stochastic model of the bacteriophage-λ lysis/lysogeny switch, taking
into account recent experimental evidence demonstrating enhanced cooperativity be-
tween the left and right operator regions OR and OL . Model parameters are estimated
from available experimental data.

Long distance transcriptional regulation between OR and OL complexes in λ-
infected E. coli is necessary for efficient repression of λ repressor CI , but its effect
on lysogenic stability is unclear. We present a stochastic kinetic model that includes
a rigorous mathematical treatment of DNA looping. We use this model to predict the
stability of the lysogenic state in wild type and mutant phage, and to investigate the in-
fluence of DNA cyclization on the stability of wild type cells and J.W.Little’s OR121, OR323

mutants (termed here and after 121 and 323-mutants) [Little et al., 1999].
Keywords: gene regulation,stability, robustness, phage-λ, lysogeny, lysis, DNA cycliza-
tion, stochastic model.

http://http://gobi.lbl.gov/~plserg
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Basic facts on E. coli λ system

• The genome of E. coli consists of a single DNA molecule of 4.6 × 106 bp (length 1.5 mm). It
codes for 4226 proteins and number of RNAs.

• Regulatory patterns:
The "genetic switch" of phage lambda allows a choice between two patterns of gene expres-
sion. This switch involves the interplay between two regulatory proteins, CI and Cro which
bind to a complex regulatory region termed OR .

• Cooperative interactions of protein binding is important

• These proteins stabilize two mutually exclusive patterns of gene expression. The regulatory
circuitry that controls these two alternatives is understood in considerable detail.

• One of the patterns of gene expression (the "lysogenic" state) can be switched to the other
(the "lytic" state) by treatments that damage DNA and induce the SOS response. This "ge-
netic switch" has threshold behavior–that is, it occurs above a threshold level of damage,
but not below that threshold.

• Relatively well known system

Event gene expressed Comments

Initial infection cro, N Only N, cro are synthesized
until decision point is reached

Lytic pathway cro, N, Q, late genes cro predominates, N,Q are anti-terminators

Lysogenuc pathway cI, cII, cIII, int

cII,cIII collaborate to establish
cI synthesis ;
after genome integration, only cI is expressed
during the maintenance of lysogeny

http://http://gobi.lbl.gov/~plserg
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Overview of the Gene Expression Patterns
and Genetic Switch

There are two similar complexes in λ-system: OR andOL with similar energet-
ics: OR produces cI and cro,OL produces transcript of N.

Genetic Switch [Arkin et al., 1998, Ptashne, 1992]

http://http://gobi.lbl.gov/~plserg
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OR and OL complexes

CI protein(λ-repressor)
Cro protein

• Only dimers are used for regulation

• Differential binding affinities: Cro2: OR3 > OR2 ≈ OR1

CI2: OR1 > OR2 > OR3

• Both Cro2 and CI2 bind to the DNA with helix-turn-helix motif.

• CI has two subunits: cooperativity of interactions is important. Cooperativity of Cro2 is not
important.

• CI can be effectively cleaved by recA protease

ATCTAT
TAGATA

ATCTAA
TAGATT

TGACTA
ACTGAT

GATAAT
CTATTA

−10 −35

−35 −10
oR2oR3 oR1

pRM

pR
cI mRNA

Cooperative interactionsAuto−repressionCI
Feedback

FeedbackCro

CI
2

2

cro mRNA

Geometric picture of OR sites and pRM/pR

promoters inside the OR ;OL is separated by

2.8× 103bp

Promoter activities of OR complex

http://http://gobi.lbl.gov/~plserg
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Kinetic and energetic parameters of OR complex

Parameter Value Meaning
kR 0.013s−1 pR activity rate
kuRM 0.001s−1 pRM activity rate (basal)
kRM 0.011s−1 with CI2 bound
kcro 0.00059s−1 decay/dilution rate
kcI 0.00034s−1 decay/dilution rate
RT 0.617 kcal/mol temperature

∆GcI,1,2,3 −12.5,−10.5,−9.5 independent bindings
∆Gcro,1,2,3 −12.0,−10.8,−13.4 independent bindings
∆Grnap,32 −11.5 kcal/mol RNAP binding on pRM
∆Grnap,1 −12.5 kcal/mol RNAP binding on pR
δGcI,12 −2.7 kcal/mol cI 2 cooperativity
δGcI,23 −2.9 kcal/mol cI 2 cooperativity
δGcro,12 −1.0 kcal/mol Cro2 cooperativity
δGcro,23 −0.6 kcal/mol Cro2 cooperativity
∆Gcro −7.0 kcal/mol Cro dimerization
∆GcI −11.1 kcal/mol CI dimerization

[RNAP] 30nM RNAp concentration
V 1.5× 10−15l E. coli volume

• Given the cooperativity and indi-
vidual binding energies CI2, Cro2,
and RNAP ∆G(s) can be calcu-
lated for every configuration s of
each different binding state.

Sources: [Shea and Ackers, 1985, Aurell and Sneppen, 2002, Darling et al.,
2000]

• CI2 can block its own production at high concentration

• RNAP forms open complex faster with CI2 bound atOR2

• Dimerization reaction: X2

k+1



k−1

2X, KD = k+1/k−1:

[X2] =
1

2
[Xtot]−

KD

8

√1 +
8[Xtot]

KD

− 1

 (6)

http://http://gobi.lbl.gov/~plserg
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StatMech of transcriptional regulation :
QuasiEquilibrium Model

• There are 40 experimentally distinguishable states s at OR with CI2,Cro2
and RNAP bound in different order.

Label 0 corresponds to the empty site, label 1 corresponds to the CI2 repressor dimer; 2 corre-

sponds to Cro2, 3 corresponds to RNAP[Darling et al., 2000]. Total number of protein of each

type (monomer units): NCro = 2Cro2 + Cro,NCI = 2CI2 + CI.

state OR1
OR2

OR3

∆G(s)
kcal/mol

0 0 0 0 0.0
1 1 0 0 -12.5
2 0 1 0 -10.5
3 0 0 1 -9.5
4 2 0 0 -12.0
5 0 2 0 -10.8
6 0 0 2 -13.4
7 0 0 3 -11.5
8 3 0 0 -12.5
9 1 1 0 -25.7

10 1 0 1 -22.0
11 0 1 1 -22.9
12 2 2 0 -23.8
13 2 0 2 -25.4
14 0 2 2 -24.8

1515 3 0 3 -24.0
16 1 2 0 -23.3
17 2 1 0 -22.5
18 2 0 1 -21.5
19 1 0 2 -25.9

state OR1
OR2

OR3

∆G(s)
kcal/mol

20 0 2 1 -20.3
21 0 1 2 -23.9
22 3 0 1 -22.0
23 0 1 3 -22.0
24 1 0 3 -24.0
25 3 0 2 -25.9
26 0 2 3 -22.3
27 2 0 3 -23.5
32 2 1 1 -34.9
33 2 2 1 -33.3
34 2 1 2 -35.9
35 1 2 2 -37.3
36 1 1 3 -37.2
37 2 2 3 -35.3
38 1 2 3 -34.8
39 2 1 3 -34.0

http://http://gobi.lbl.gov/~plserg
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• Grand-canonical partition function (following [Shea and Ackers, 1985, Au-
rell and Sneppen, 2002]):

Z =
∑

s

e−
∆G(s)
RT

(
Cro2

V

)∑
i si,1
(

CI2

V

)∑
i si,2
(
RNAP

V

)∑
i si,3

, (7)

p(s) =
1

Z
e−β∆G(s)

(
Cro2

V

)∑
i si,1
(

CI2

V

)∑
i si,2
(
RNAP

V

)∑
i si,3

(8)

• Activities of promoters (PRM ,PR ) are weighted combinations of RNAP-
open complex formation rates: CI2 activity comes from the states where
RNAP bound toOR3

:

f1 = fCI(CI2,Cro2) = kRMNRM(p23 + p36 + p39)+ (9a)
+kuRMSRM(p7 + p15 + p24 + p26 + p27 + p37 + p38) (9b)

Cro2 activity comes from the states whereRNAP bound toOR1
:

f2 = fCro(CI2,Cro2) = kRNR(p8 + p15 + p22 + p25) (9c)

• “Thermodynamic equilibrium assumption” does not mean that the prob-
abilities p(s) remain constant in time

• How to account for delays due to transcription/translation: CI2(t) →
CI2(t− τ )?

• In addition there are 30 independent states at OL . For the future: What if
they (OR andOL ) can interact?

http://http://gobi.lbl.gov/~plserg
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Role of the DNA in Long-Range Interactions

• DNA is a flexible polymer that can adopt a variety of conformations different both in its
secondary structure and tertiary structure as determined by intrinsic DNA curvature and
DNA super-coiling

• DNA-looping mechanisms are part of networks that regulate all aspects of DNA
metabolism, including transcription, replication, and recombination

Systems with looping:

• Bacteria: lac, ara, gal, distance: L ≈ 100 bp

• Viruses: λ-system, distance: L ≈ 60 bp [Ptashne, 1992], L ≈ 2.3 × 103 bp [Dodd et al., 2001]
(slow)

• Eukaryots: transcription (L ≈ 5× 103 bp) mating type switching, L ≈ 100× 103 bp

• Multiple looping of DNA reduce the gyration radius→ easy transfer into cells

http://http://gobi.lbl.gov/~plserg
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DNA looping

• Decrease of the polymer entropy is compensated by the interaction be-
tween the segments of the dsDNA: ∆G = ∆GTF − T∆Sloop. Polymer cy-
clization is a very hard computational problem (time scale separation(for
L� lp ) ,non-Markovian process [Szabo et al., 1980, Sokolov, 2003]).

• Huge simplification: Markovian escape problem

Effective potential for the reaction

coordinate r for the polymer of

length L and Kuhn length lp. D

is the diffusion coefficient of the

“monomer” with length lp.

r is the end-to-end distance: V (r, L) =
−β−1 ln[4πr2G(r, L)︸ ︷︷ ︸

radial distr.

]

Coordinate r is driven by the white-noise over
the barrier A→ B

γṙ = −∂rV (r, L) + ξ(t), (10a)

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), γ−1 = βD

τ−1
Kr =

ωAωB
2πγ

exp(−β∆VAB(L)), (10b)

ωA,B = l−1
p

√
∂rrV (r, L)r=A,B

• Kramers escape time for the G(0, L/lp) ∝ (L/lp)
−3/2, L/lp � 1 [Rippe

et al., 1995]:

τKr ≈
l2p
D

(
lp
L

)3
2

, (11)

τKr ≈ 0.03− 0.3sec

http://http://gobi.lbl.gov/~plserg
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Role of the DNA in Long-Range Interactions

• Long-Range interaction between OR and OL could alter the gene regula-
tion in λ

• Additional change in the Gibbs energy due to the loop formation:

δ∆G = −
∑
ij

∆Goct
RL σCI2 ORi︸ ︷︷ ︸

0,1

σCI2 ORi+1︸ ︷︷ ︸
0,1

σCI2 ORj︸ ︷︷ ︸
0,1

σCI2 ORj+1︸ ︷︷ ︸
0,1

, (12a)

δ∆G = −∆Gtet
RL [σCI2 OR1

σCI2 OR2
σCI2 OR3

] [σCI2 OR1
σCI2 OR2

σCI2 OR3
] , (12b)

∆Goct
RL = −0.5kcal/mol,

∆Gtet
RL = −3.0kcal/mol

Facts

1. CI2 can effectively form oc-
tamers in solution [Bell and
Lewis, 2001]

2. Repression of PR increased×4
in the presence of OL

3. Promoter PRM can be also
repressed ×1/2.5 (need site
OL3)

http://http://gobi.lbl.gov/~plserg
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Possible rearrangements of states

http://http://gobi.lbl.gov/~plserg
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Model Development:
Equation-less Modeling

• “On/Off” binding rates:

kon =
4πDε

V
, ε− target size10 nm, (13)

kon ≈ 0.1− 0.05 s−1 for D = 5µ2m/sec

koff = konV
αeβ∆G, (14)

Regular non-cooperative binding/release of the transcription factor
X = CI2,Cro2 to the siteORi(OLi),i = 1, 2, 3 can be expressed as:

X + ORi

kon


koff

XORi (15a)

X + OLi

kon


koff

XOLi (15b)

(15c)

Species ORi and OLi as well as bound complexes XORi, XOLi are essentially
binary.

• Cooperativity of binding:

X + ORi + XORj 
 XORi + XORj (16a)
X + ORi + XORj 
 XORi + XORj (16b)

http://http://gobi.lbl.gov/~plserg
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Model Development:
Equation-less Modeling (Cont’d)

• Dimerization reactions 2X
 X2 take place on the background

• Both dilution and degradation of proteins are accounted.

• Several topological sates of the dsDNA act as pseudospicies

L00 + ORi + X2 
 L00 + X2ORi (17)
L00 + . . .
 L11 + . . . (18)

• Unspecific binding of CI2 and Cro2 to the dsDNA is included via simple
projection:

X2(t) =
X2(t−) + X2DNA(t−)

1 + LDNA/V exp(−β∆GuX)
, (19a)

X2DNA(t) = X2(t−) + X2DNA(t−)−X2(t), (19b)
X = {Cro,CI}

LDNA ≈ 107 is the number of binding sites on E. coli chromosome and
V = 1.2× 109M−1 is the cell volume.

http://http://gobi.lbl.gov/~plserg
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Different Systems: OR121 and OR323
• Structure of theOR can be perturbed [Little et al., 1999]

Why lysogenic state is stable overall? What role does OL - OR
interaction play?

Plot of Prob(s = PRM); OR121 has reduced

activity of PRM [Little et al., 1999, Aurell

et al., 2002]

Plot of Prob(s = PR); OR323 has increased

activity of PR [Little et al., 1999, Aurell

et al., 2002]

http://http://gobi.lbl.gov/~plserg
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Results
λ+-system

15 20 25 30 35

0
50

10
0

15
0

time (gen)

C
I 2

, C
I

CI2
CI

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

CI2

P
s

ave ~ 75

0 50 100 150 200

0.
00

0.
02

0.
04

0.
06

0.
08

CI

P
s

ave ~ 51

http://http://gobi.lbl.gov/~plserg


Home Page

Title Page

Contents

JJ II

J I

Page 23 of 61

Go Back

Full Screen

Close

Quit

Results
CI λ−OR121-system

10 15 20 25 30 35

0
20

40
60

80
10

0
12

0

time (gen)

C
I 2

C
I

Ci2
CI

0 50 100 150 200

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

CI2

P
s

ave ~ 24

0 50 100 150

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

CI

P
s

ave ~ 21

http://http://gobi.lbl.gov/~plserg
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Cro λ−OR121-system
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Results
CI λ−OR323-system
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Results
Cro λ−OR323-system
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Results (contd)

• OR -CI -OL interaction may lead to stability

• OR121 may not be stable at very strong cyclizatin rates

http://http://gobi.lbl.gov/~plserg
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3. Rare events in transcriptional regulation of λ-
phage infected E. coli cells.

Sergey Plyasunov

Abstract

We examine the statistical picture of transition pathways that describe the decay
from a meta-stable lysogeny state in λ-phage infected E. coli cells, which is known
to have an exponentially large stability under normal immune conditions. We present
results on identification of the transition pathways and computation of the effective
rate of the transition lysogeny→ lysis . This formalism defines the quantitative measure
of the robustness of epigenetic states.

http://http://gobi.lbl.gov/~plserg
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Transition lysogeny→ lysis in λ phage.

• In the absence of recA -mediated cleavage of the repressor (so called
recA− system) λ+ system is exceptionally stable (5 − 7 years; compare
to 30min ≈ 1gen). Experiments of [Toman et al., 1985] show possibil-
ity of switching back to lysogenic state from anti-immune state in a de-
fect λ-phage that can not escape the E. coli chromosome. In this case
system switches back to lysogenic state with high Cro numbers with rate
10−2 − 10−3 per generation and per cell:

A︸︷︷︸
lysogeny

kAB


kBA

B︸︷︷︸
lysis

(20)

(21)

• Quasi-stationary stateA for the wild-type system corresponding to the to-
tal number of CI ≈ 200 (≈ 100 CI2) and Cro ≈ 0 . In the lytic state (B) CI
≈ 0 and Cro≈ 40− 80 molecules in total.

• How one can predict “macroscopic” rates kAB, kBA from “microscopic” pa-
rameters (kinetic rates, binding energies, etc.)??

http://http://gobi.lbl.gov/~plserg
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Kinetic Rates and Rare Events

What is kinetic rate kAB?
C(t)

tτ x

k AB (t−τ x )

C(t) =
〈1A(X(0))1B(X(t))〉
〈1A(X(0))〉

, C(t) ≈


0, t ≤ τX

kAB × (t− τ x), τX < t < k−1
AB

kAB
kAB+kBA

× e−(kAB+kBA)t, t > k−1
AB

(22)

Kinetic rate can be found as a slope of the correlation function C(t).

But straightforward approach:to follow the time evolution of the system with molecular dynam-

ics simulations until a reasonable number of events has been observed will fail.
Examples:

• Chemical kinetics ([Kramers, 1940],[Hänggi et al., 1990])

• Protein folding

• Complex database query (e.g. statistics of alignment scores)

• Communication networks failures

• etc

Use of traditional Monte Carlo methods is “prohibited” even for the “simple” chemical systems:

(e.g. proton transfer in H2O: τdwell H20 = 1 hour,τvib = 10−15 sec) or more complex ( hydrophobic

polymer collapse[tenWolde and Chandler, 2002], DNA polymerase β closing [Radhakrishnan

and Schlick, 2004]).

http://http://gobi.lbl.gov/~plserg
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Breaking the Barrier of Rare Events:
Study of the rare events/large deviations

1. H. Kramers (1940)[Kramers, 1940] and his early theory of chemical reac-
tion rates as a diffusion over the simple barrier (Kramers Theory).

2. Transition State Theory (TST) Requires the identification of the potential
barrier and transition state :

kAB = ωA exp(−∆G‡AB/RT )

Equilibrium systems only.

3. Large Deviation Theory in dynamical systems (small noise limit) [Freidlin
and Wentzel, 1984]. Applicable for non-equilibrium systems [Aurell and
Sneppen, 2002].

4. Transition Path Sampling (TPS)[Pratt, 1986], [Dellago et al., 1998, Berne
et al., 1997, tenWolde and Chandler, 2002, Dellago et al., 2002, Hagan
et al., 2003]. Statistical mechanics of transition pathways connecting
meta-stable states of the equilibrium system. Crucial point: need “seed”
pathway and efficient sampling in pathway-space.

5. Multilevel methods (e.g. Transition Interface Method (TIS) [van Erp et al.,
2003]). Diffusive transition with multiple re-crossings [Bolhuis, 2003].

http://http://gobi.lbl.gov/~plserg
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Trajectory of the Markov Process

Consider the Markov process {Xt}0≤t≤T .
Assumption: ergodisity w.r.t. some invariant measure (Gibbs measure for
“classical” MD).
Types of dynamics:

• Langevin dynamics:

Ẋ = p, (23a)
ṗ = −∇XU(X)− γp + σξ︸︷︷︸

white noise

(23b)

• Overdumped-”Chemical” Langevin equation:

Ẋt = a(Xt) + σ(Xt)ξ︸ ︷︷ ︸
white noise

(23c)

• Jump-process:

dXt =
∑
r

νr dNr(dt|Xt)︸ ︷︷ ︸
state dep. Poisson noise

(23d)

http://http://gobi.lbl.gov/~plserg
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Computational framework
for the calculation of kAB.

Approach:

• Introduce interfaces Ai : A0 = A,A1, A2, . . . An = B

• Random crossing time(s): τB = inf{0 ≤ t ≤ ∞ : Xt ∈ B} τA (first return
back toA): τi = inf{0 < t ≤ ∞ : Xt ∈ Ai}.
• Transition rate in diffusive limit:

kAB = νA,0P(τB < τA) (24a)

P(τB < τA) = P(τ1 < τA)

N∏
i=2

P(τi < τA|τi−1 < τA) (24b)

Stochastic trajectory starting at A0 and labeled
as a corresponds to the event {τ1 > τ0} while
pathway labeled as a′ corresponds to the event
{τ1 < τ0}. Similar, trajectory b corresponds to
the event {τ2 < τ0} took place conditional on
event {τ1 < τ0}, while b′ corresponds to the event
{τ2 > τ0} conditional on event {τ1 < τ0}.
νA,0-frequency of crossing events through the
A0.

http://http://gobi.lbl.gov/~plserg
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Computational framework for the rate calculation

• At every interface i one runs ni replications of the trajectory from the point
X0,i. Trajectory is stopped either when it reaches the interface of the level
i + 1 or return back to the original stateA0 = A.

P(τi+1 < τA|τi < τA) = pi ≈
ni→i+1

ni
(25)

• New starting position X0,i+1 is the average Xτi+1
: X0,i+1 = 1

ni→i+1

∑ni→i+1

j=1 Xτ ji+i

• Estimator for P is unbiased but has a variance:√
var{pi} =

√
(1− pi)pi
ni

(26)

http://http://gobi.lbl.gov/~plserg
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Transition pathway

Between interfaces Ai trajectories are simulated with ME:

∂P (X1, X2, t)

∂t
= f1(X1 − 1, X2)P (X1 − 1, X2, t) + f2(X1, X2 − 1)P (X1, X2 − 1, t)+ (27a)

+k1(X1 + 1)P (X1 + 1, X2, t) + k2(X2 + 1)P (X1, X2 + 1, t)− (27b)
−(f1(X1, X2) + f2(X1, X2) + k1X1 + k2X2)P (X1, X2, t) (27c)

variables X1 = CI2 and X2 = Cro2.

CI2

20

40

60

80

100

Cro2

10

20

30

40

P
rP

ath

0.0
0.2

0.4
0.6

0.8
1.0

Resulting transition pathway for the

lysogeny-lysis transition correspond-

ing to the w.t. parameters. ni = 104

trajectories are used at every interface.

Interfaces i = 0 . . . 10 are located at

CI2=const

2 4 6 8 10

−
5

−
4

−
3

−
2

−
1

0

interface,i

C
ro

ss
in

g 
pr

ob
ab

ili
ty

: l
og

P
(|(

i, 
0)

)

Cumulative crossing probability lgP(0 → i)
at the different interfaces i for the lysogeny-
lysis transition corresponding to w.t. λ
phage.

Slope of lgP is maximal at i = 4 − 6 corre-

sponding to CI2=50-60 and Cro2 ≈ 8. (“TS”)
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Robustness

•

−15.0 −14.5 −14.0 −13.5

−
10

−
9

−
8

−
7

−
6

∆GCroOR3

lg
(k

A
B
)

Dependence of the transition rate kAB on the Gibbs

energy of the Cro2 dimer binding to the operator site

OR3. One can see that kAB increases almost 3 orders of

magnitude when ∆GCroOR3 is decreased, but it still stays

at very low values (∝ 10−6s−1, compare with the time

scales of one generation of E. coli cells ≈ 2 103sec) and

lysogenic states remains robust under large perturba-

tions in ∆GCroOR3

Gibbs energy
∆GCroOR3 (kcal/mol) kAB(sec−1)

−13.10 5.33 10−11

−13.40 [Darling et al., 2000] 4.96 10−9

−14.00 3.02 10−7

−14.40 2.66 10−6

−15.40 3.45 10−6
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Conclusions

• Concept of robustness is introduced

• Algorithm is presented and used to study the transition rates of the
lysogeny→ lysis

• Stability of the λ phage is investigated in response to the change in
∆GCroOR3

http://http://gobi.lbl.gov/~plserg
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4. Coarse-grained Kinetic Monte Carlo simula-
tions: separation of time scales and renormal-
ization of transition rates.

Sergey Plyasunov

Abstract

This work addresses the theoretical framework and numerical methods for per-
forming stochastic simulations of reaction dynamics in chemical networks with time-
scales separation. This technique is based on application of the projection technique
and cumulant expansion to the chemical Master Equation. We present a general and
systematic procedure for the elimination of the fast irrelevant variables and present a
new form of the chemical master equation which involves only relevant species with
the ratio of time-scales serving as a small perturbation parameter. Accuracy of the per-
turbation expansion is analyzed. This approach is applicable to a wide range of prob-
lems including typical modeling framework of biochemical/genetic networks.

http://http://gobi.lbl.gov/~plserg
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Coarse-Graining

• In many cases separation of time scales is very well developed ( example:
binding/dissociation events of TF or change of DNA topology v.s. gene
translation/transcription): fast and slow manifolds. Many other examples
can be given across different scientific disciplines.

• System takes the “closure” on the slow manifold.

• Fast reactions are becoming the computational bottleneck of KMC ⇒
Need for computational techniques which are able to “coarse-grain” on
irrelevant features of the system (think of Claude Monet or Renoir )

• “Coarse-graining” has to be done in stochastic framework (Reason: irrele-
vant species may have low copy number [Kepler and Elston, 2001, Bund-
schuh et al., 2003, Rao and Arkin, 2003, Shibata, 2003]).

• Maintain accuracy and achieve speed up.

http://http://gobi.lbl.gov/~plserg
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Deterministic QSSA

QSSA provides the dimensionality reduction for deterministic systems with
separation of time scales: Examples

1. Enzymatic Networks:

X + E
k+1



k−1

EX
k2→ E + X∗ (28a)

dEX/dt→ 0, EX = E0X/(X + KM) + O(ε) (28b)
ε = E0/(KM + X0), (28c)

E0 = E + EC, KM = (k−1 + k2)/k1 (28d)

2. These two networks are dynamically equivalent (Brusselator[Nicolis and
Prigogine, 1977], non-linear chemical “oscillator”):

A→ X (29a)

X + 2Y
k̃→ 3Y (29b)

Y → B (29c)

A→ X (30a)

2Y
k+1



k−1

Z (30b)

X + Z
k2→ Y + Z (30c)

Y → B (30d)

k1 � k−1, k2 = O(k−1), ε = 1/k−1.
If ỹ = y + 2z,then:

z = k1ỹ
2ε + O(ε2) (31)

k̃ =
k1k2

k−1
(32)

http://http://gobi.lbl.gov/~plserg
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Fast and slow reactions

Goal: exploit separation of time scales to simplify the ME:

∂p(S, t)

∂t
= Lp(S, t), (33)

linear operator L for the pure jump Markov pro-

cess:

L . . . =

R∑
r=1

ar(S− νr) . . .−
R∑
r=1

ar(S) . . .

(34)

set of reactions

R = R0 ∪R!{fast, slow}, (35)
S = (Y,X) = (fast, slow), (36)

ε = τY /τX � 1 (37)

New Chemical Master Equation:

∂p(X, t)

∂t
=
∑
r∈R1

ãr(X− νrX, t)p(X− νrX, t)−

−p(X, t)
∑
r∈R1

ãr(X, t). (38)

Assumptions:

• Conditional on the slow species, fast should reach a stable distribution quick: p(Y, t|X) →
p̂(Y|X) on the time scale τY � τX .

• Cumulants:

C1(t; X) = 〈Y〉 (39)

C2(t1, t2; X) = 〈〈Y(t1)Y
T (t2)〉〉 = 〈Y(t1)Y

T (t2)〉 − 〈Y(t1)〉〈YT (t2)〉 (40)
. . . (41)

Computed over the p̂(Y|X) must exist and be finite.

• Comment: “Slow” species participate only in “slow” reactions (i.e. reactions with small

ar(X,Y), r ∈ R1)

http://http://gobi.lbl.gov/~plserg
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Basics of the Kinetic Monte Carlo

• Survival/waiting probability:

Q(t|X,Y) = exp(−t
∑
r

ar(X,Y)) =
∏
r

exp(−tar(X,Y)) ≡
∏
r

Qr(t|X,Y),

(42)

pr(t|X,Y) = − ∂
∂t
Qr(t|X,Y) (43)

• Time steps τ of the reactions are sampled fromQr(t|X,Y) and smallest is
chosen.

• Update time-step:

τ1 ∝ Q1(t|X),

τ2 ∝ Q2(t|X), (44)
. . . (45)

τ = min(τ1, τ2, . . .) = τr∗, t← t + τr∗, (46)

• Update species:

(X,Y) = (X,Y) + νr∗ (47)

• How does distribution Qr(t|X,Y) looks like for the slow reactions? How
strong non-Markovian effects?

• When it’s possible to introduce the effective transition rate?

http://http://gobi.lbl.gov/~plserg
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Example
Consider the system:

X + X
k+1

�
k−1

X2

E + X2

k2

�
k−2

EX2

EX2
k3→ EX2 + P(∗)

P
k4→ ∅

N = E+EX2, ε =
k3

k−2 + k2X2
≤ 1.0

E{EX2|X2} =
Nk2X2

k−2 + k2X2

〈〈EX2(t)EX2(0)〉〉 = 〈∆EX2
2〉e−k−2+k2X2t,

• InvestigateQ∗(τ |X) at different ε,N

• Can the distribution be fitted to a set of lines?

http://http://gobi.lbl.gov/~plserg
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Plots of log Q∗(τ |X) for different ε andN ( Strong non-Markovian effects):

0 5 10 15 20 25 30

−
8

−
6

−
4

−
2

0

t

lo
gQ

(t
)

e=1.0 N=2
e=1.0  N=10
e=1.0  N=20

• Two asymptotic for the kinetic rate−∂ logQ∗
∂t

• The bigger number of states (N) in the fast manifold the stronger non-
Markovian effects

• at large t logQ∗(t) is a straight line again (intermitancy dies out)
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DistributionQ∗(t) for ε = 0.1 andN = 3
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−
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−
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−
1

0

t

lo
gQ

(t
)

e=1E−1
MF

• Mean-field rate
∑

Y a∗(X,Y)p̂(Y|X) goes in between of the asymptotic of
−∂ logQ∗(t)

∂t
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Statistics of waiting times
and Renormalization of Rates

General approach for the effective transition rates.

Consider one particular “slow”
reaction r:

ν+
X1rX1 + · · · + ν+

Y 1rY1 + . . .
kr→

ν−X1rX1 + · · · + ν−Y 1rY1 + . . .
(49)

which involves species from
both subsets X and Y.

• Averaged survival probability:

Q̃r(t|X) ≡
〈

exp

(
−
∫ t

0
dsar(X,Ys)

)〉
(50)

Average 〈·〉 is taken over the realizations of the jump process Ys, [0 ≤ s ≤
t] with probability density p̂(Y, t|X).

• Eqn. (50) can be represented as a sum over all possible cumulants of the
process Y:

Q̃r(t|X) = exp

[
∞∑
m=1

(−1)m

m!

∫ t

0
dt1 . . .

∫ t

0
dtmC

(m)
r (X, t1, . . . , tm)

]
(51)

• Effective transition rates ãr:

ãr(X, t) = − ∂
∂t

ln Q̃r(t|X) (52)

http://http://gobi.lbl.gov/~plserg
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Effective Rates
• In the first order approximation [Rao and Arkin, 2003] (mean-field):

ãr(X, t) = C(1)
r (X, t) = 〈ar(X,Y)〉, r ∈ R1 (53)

This gives Michaelis-Menton, Hill transition rates in deterministic frame-
work.

• The difference:

∆ar(X, t) = ãr(X, t)− 〈ar(X,Y)〉 =
∂

∂t
[

∞∑
m=2

(−1)m−1

m!

∫ t

0
. . .

∫ t

0
C(m)
r (X, t1, . . . , tm)dt1 . . . dtm]

(54)

expresses the contribution of the fluctuations of the eliminated fast vari-
ables to the effective rate.

C(m)
r (t1, . . . , tm) = A(m)

r (ε)
∏
u

e−µr(ε)|tu−t
∗
m|, (55)

t∗m = min{t1, . . . , tm} and µr(ε) ∝ ε−1.

http://http://gobi.lbl.gov/~plserg
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• Regime of the short memory the effective rates are independent of the
time:

ãr(X, t) = independent of t as t→∞
and description becomes Markovian at the time scales larger then the
correlation length of the fast species τY ⇒ Regular kinetic Monte Carlo
schemes (Bortz et al. [1975], Gillespie [1977]) for stochastic simulation of
contracted system i.e. sampling trajectories Xt.
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Histograms of the number of reaction

events in the reaction channel (*) obtained

by exact kinetic Monte Carlo (Gillespie

method), by mean-filed reaction and

second order correlation correction for

ε = 0.01.
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events in the reaction channel (*) obtained

by exact kinetic Monte Carlo, by mean-

filed reaction and second order correlation

correction for ε = 0.1
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Speed-Up
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Conclusions
• Approach is applicable for the reaction systems which display well-

developed separation of time scales between relevant and irrelevant
species.

• Effective kinetic rates can be identified through the averaging of the transi-
tion rates over the statistics of Y|X (using mean and correlation functions
of the conditional process Y|X ) leading to the KMC for the coarse-grained
model.
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5. Uncertainty Propagation in Models of multi-
Variable Chemical Reaction Networks: Sepa-
ration of State Variables and Parameters.

Sergey Plyasunov

Abstract

Tentative

Uncertainty propagation scheme is presented for the stochastic system described
by the chemical master equation. Method relies on Poisson mapping technique and
use of Polynomial Chaos Expansion (PCE) for the propagation the uncertain structure
of parameters.

Coefficients of the expansion are computed through the Galerkin procedure. The
convergence of the solution with respect to the resolution level is investigated.

This computational approach can be useful for the purposes of the parameter es-
timation since it provides with efficient computational schemes for the evaluation of
the sensitivities with respect to the kinetic rates.
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Propagation of Uncertainties

• Models are always uncertain

• Sensitivity of the (stochastic) non-linear dynamics with respect to the val-
ues of parameters are crucial for design and identification

• Uncertainty can be modeled as “disorder” of the parameters, i.e. depen-
dence of the parameters on random variable(s) of some type (Poissonian,
Gaussian, Uniform, etc.) or even stochastic processes of some type (white
noise).

• Even in linear systems with simple distributions of parameters (i.e. Gaus-
sian type) resulting uncertainties in state space are usually more compli-
cated:

dx/dt = L(k(ξ), x) = ±k(ξ)x, k(ξ) = k0(1 + σξ), x ∝ N (0, 1), (56a)

dP (k) =
dk√

2πk0σ
exp(−(k − k0)

2

2k2
0σ

2
), (56b)

⇓

dP (x|t) =
dx

k0σ
√

2π
exp(−(ln(x/x(0))± k0t)

2

k0σt
) (56c)

• Small perturbations/multiple shooting with stiff ODEs/Monte Carlo;
group theoretical analysis - might be too “complex” for complex systems.

One has to take uncertainty directly into the modeling approach

http://http://gobi.lbl.gov/~plserg
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Polynomial Chaos Expansion
• Any “signal” x(t) ∈ L2([0, T ]) can be decomposed into the frequency spec-

trum:

x(t) =
∑
n

xn(ω)eiωnt, (57a)

||x||2 =
∑
n

|xn|2 (57b)

• Linear system with the input u(ω) is related to the response x(ω):

x(ω) = H(ω)u(ω)

• Similar to that[Cameron and Martin, 1947], any function of the random
variable ξ(ω) with measure dµ(ξ) can be considered as a map the space
(Ω,FΩ,P) to Rn and can be expanded in basis of orthogonal polynomials
{Hn(·)}:

x(t, ξ(ω)) =

∞∑
n=0

xnHn(ξ(ω)), (58a)

〈Hn, Hm〉 =

∫
dµ(ξ)Hn(ξ)Hm(ξ) = δmn, (58b)

||x||2 =

∞∑
n=0

||xn||2, (a wonder!) (58c)

• Functions xn spectral modes representing propagation of disorder from
parameters k into state variablesX .

• For the nonlinear system:

dx/dt = L(x,k)→ dxn/dt = 〈Hn, L(
∑
p

kpHp,
∑
m

xmHm)〉 (59)

Small example will suffice.
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Polynomial Chaos Expansion (Cont’d)
If dµ(ξ) = dξ√

2πe
− ξ2

2 then most suitable basis are

Hn(z) = (−1)nez
2/2 d

n

dzn
e−z

2/2, H0 = 1, H1(z) = z, H2(z) = z2−1, H3(z) = z3−z

Then:

Eξ{x(t)} = x0(t), (60)

Varξ{x(t)} = x1(t)
2 + 2x2

2(t) + 6x2
3(t), . . . (61)

−2 −1 0 1 2

−
2

−
1

0
1

2

z

H
n(z

)

“Wiener Chaos”
[Wiener,
1938],[Chorin,
1974],[Ghanem and
Spanos, 1996]

• Different types of polynomials may be efficently use for different types of
“disorder”

Simple Example

Consider: X
k→ ∅ or dx/dt = −kx.

Gaussian disorder: k(ξ) = k0H0(ξ) + k0σH1(ξ), x(t, ξ) ≈
∑N

n=0 xnHn(ξ)
Results in the coupled chain of equations (all xn = 0 for n > N ):

ẋ0 = −k0x0 − k0σx1 (62a)
ẋ1 = −k0x1 − k0σx0 − 2σx2 (62b)
ẋ2 = −k0x2 − k0σx1 − 3σx3 (62c)

. . . (62d)

http://http://gobi.lbl.gov/~plserg


Home Page

Title Page

Contents

JJ II

J I

Page 55 of 61

Go Back

Full Screen

Close

Quit

Example Cont’d

0 2 4 6 8 10

0.
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t,time

X
(t)

Trajectory X0(t) and uncertainty varX(t)
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t,time

X
0(t
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X

M
C
(t)

err, N=5 s=10% 

Error between MC result and x0(t)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

−
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−
5.
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−
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−
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Log-Error log(∆) vs expansion order N .
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Stochastic Setting

• In stochastic setting X(t) is a random variable for every moment of time t,
hence joint pdf P (X, t; k) must be investigated on parameter sensitivity

S∑
i=1

ν+
irXi

k+r



k−r

S∑
i=1

ν−irXi (63a)

∂P (X, t)

∂t
=
∑
r

ar(X− νr)P (X− νr, t)− (63b)

−P (X, t)
∑
r

ar(X) (63c)

• Development PCE schemes directly for the Chem. Master Equation could
be problematic: considering ME as a linear system is hindered by huge
amount of states.
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Stochastic Setting

Possible solution:

• Use some parametrization of P (X, t) e.g. for the system near non-
equilibrium steady state characterized by the drift matrix A and diffusion
matrix D (Linear Noise approximation):

P (X, t) ∝ e−
1
2(X−µ(t))TΣ−1(t)(X−µ(t)), (64)

µ̇ = −Aµ(t), (65)

Σ̇(t) = −AΣ(t)−Σ(t)AT + D. (66)

• Now PCE may be applied as an expansion ofµ(t) and Σ(t):

k(ξ) = k0 + k1H1(ξ), (67)

µ(t, ξ) ≈
N∑
n=1

µn(t)Hn(ξ) (68)

Σ(t, ξ) ≈
N∑
n=1

Σn(t)Hn(ξ) (69)
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Uncertanty Propogation: Stochastic Setting

• General parametrization of P (X, t) e.g. [Chaturvedi and Gardiner, 1979,
Gilchrist et al., 1997]:

P (X, t) =

∫ ∏
Dµ(q)p(q, t)

qXi
i e
−qi

Xi!︸ ︷︷ ︸
independent Poisson pdf

(70)

• Master equation can be mapped to PDE

∂p(q, t)

∂t
= L(q,

∂

∂q
)p(q, t) (71)

• Small noise problems/Rare Events: p(q, t)→ exp(−W (q)).

p = ∂W
∂q ,

q̇ =
∂H(q,p)

∂p
, (72a)

ṗ = −∂H(q,p)

∂q
, (72b)

H(q,p) =
∑
r

(exp(νrp)− 1)ar(q) (72c)

• PCE can be used to study sensitivity of the trajectories (q(t), p(t)).

More ot come. . .
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