BioLogic:

“A compiler of high-level descriptions of
biochemical systems, which targets chemical
stochastic simulators.”

The Problem:

The difference between how biologists model complex systems, and
the expected input of modern chemical stochastic simulators.

3 UTR

s o L e B L 2

3 UTR RAS

5 UTR mRNA4

—_—
o _ﬁRNAﬁ > S e MRNA

. I Wit ininito it
RARATRAT LIRGTR A AR A re ras s R ALY s
e e = - = = - = = . S = i

] Lo R S R .

Requirements:

Cytosolic molecules binding to DNA

Molecular machinery processing along DNA (RNA
polymerase)

DNA segment inversion
Modification of bound molecules
Convergent transcription

RNA interactions

(partial) transcription, translation, and replication.

Design Goals:

Effectively express the numerous underlying chemical
reactions that are implicitly stated in biochemical
models.

Avoid need to re-design the target simulators.

Capture as much complexity of the model as possible,
without going into a volume-exclusion 3D-model.

Reaction generation method should introduce no more
amortized complexity than any other method.

Possible Approaches:

* Nondeterministic Finite State Machine
(NDFSM)

* 'High-level description' to 'simulator
input' compiler.

NDFSM Approach:

* Pros:
* No need to pre-compile the system model.
* Very straight-forward software design.

* Mitigates need for exhaustive reaction ennumeration.

* Cons:
* Will add a huge overhead to the simulator's main loop.

* Requires the re-design of existing simulators.

The Compiler Approach:

* Pros:
* “Pre-compiled”, so simulator-loop is spared.
* No necessary changes for simulators.

* Trivial alterations for simulators can allow significant
speed-up.

* Allows for possible run-time optimizations.
* Cons:
* Ennumeration of all possible 'trivial' reactions.

* Requires sophisticated software design.

DNA

The Software Design

* C++ for fast, object-
oriented design.

* Compiler classes are
generalizations of
biochemical objects
distilled to their
essential features.

o Still being developed.

The Approach:

* All such intereactions can be refined to casting
the problem as determining all the overlapping
intervals along a sequence.

* Coupled with symbol generation, this generates
the reactions for the simulator.

Examples:

Ligand + BindingSite + !(OverlappingLigand*OverlappingBindingSite)
-->

(Ligand*BindingSite)

RN AP, + siteg = RN APysitey, [*first bindingx/ (1a)
site;11 + RN AP bind; - RN AP, site; 1 + site;,
i=1...L—1 /xdrift of RNAP1x/ (1b)

RN AP;siter, 1 + siter, — siter/ * terminator * / (1c)

The Core Algorithm;

* Interval tree:
augmented red-black
search tree.

* C++ algorithm from
computational
geometry suite CGAL.

i

* Allows for all-vs-all

| | L L | Ove]‘lap deteCtiOIl in

S/ ik

— O(n*logn).

Example of Geometric Overlap

Detection:
* This is a critical _ = .

algorithm for VLSI Ficiiis 1
design & layout tools. | 2y ==

e Used in GUI/
windowing software
for fast response.

3 L lrlzsszs

Lureaprie s _Ih i li P

Ap ugias _ lsamnples
Msounds Antyles

Iternplat:z Ivizares

Acknowledgements:

* Adam Arkin
* Sergei Plyasunov

e Keith Keller, Eric Alm, Ken Koster, Alex
Gilman, and all others who assisted my
algorithmic design and my learning of C++.

