Control of the Pathogenic *fim* Switch in E. coli

Denise Wolf and Adam Arkin

From: Abraham, S.N, et al. (1988) Infection and Immunity. 56(5):1023-1029

Molecular Control of Infection Dynamics

•30% of women will have at least one urinary tract infection during their life •Urinary Tract Infection (UTI) accounts over 7 million office visits per year

•25% recurrence rate- 85% are caused by the initial strain.
•80% caused by uropathic Escherichia coli

Host defenses: micturition, exfoliation, anti-microbials, neutrophil influx, 2nd, 3rd waves of immune system.

Type-1 pili virulence factors, enabling (1) adhesion, and (2) invasion

Type-1 Pili

•Benefits

- •Avoid being washed away (adherence)
- •Opportunities for rapid replication (*invasion, factory mode*)
- •Opportunities for recurrence (*invasion, quiescent mode*)

•Costs

- •Activation of immune system, rapid clearance of infection
- •Detract from survival outside host agglutination, lack of good target
- •Energy requirements

•fim control circuit balances conflicting demands for survival

- •Heterogenous, two-state population, stochastic phase variation
- •Switching rate, piliation level, attachment, detachment, growth rates adapt s.t.
 - •Persistent infection
 - •Avoidance of neutrophil spike
 - •Quiescent pockets for recurrence
 - •Locally responsive to state of environment, host, disease process phase

Genetic Make-Up of the Fimbriation Switch

•<u>Invertible element</u>, 314 bp, w/fimA promoter •**Recombinases** <u>FimB</u>, <u>FimE</u>;

FimE w/marked ON-to-OFF preference •<u>IHF</u>-necessary for switching (+) •<u>Lrp</u> - greatly accelerate switching (+) •<u>H-NS</u> - repressor, Temp dep [], activity (-) •*fimE* <u>orientational control</u>

This compact integrated circuit can

- Mediate the % of cells that have pili.
- Control the rate at which a population changes piliation state
- Sense the temperature of the host to mediate switching
- Sense the amount of nutrient in the medium.

System-level Questions

How does network architecture accomplish phase variation control?

•Basic switch operation:

How does circuit sense the environment and control piliation level, attachment, detachment, invasion rates to balance demands of infection?

•Design questions:

•Why two independent recombinases?

•Source of ON-to-OFF *specificity of FimE*? (hypothesized binding affinities, orient control)

•Role of orientational control of fimE?

•How is temperature control achieved? (tuned to mammalian body temperature)

Regulatory motifs?

Mathematical model

Invertible element

$$\frac{dP_{on}}{dt} = f(1-P_{on}) - gP_{on} \quad (1)$$
Equilibrium statistical thermodynamics for f, g
with

$$f = \frac{\sum_{s \in OFF} \alpha_s e^{-\Delta G_s / RT} [IHF]^{n(s)} [FimE]^{j(s)} [FimB]^{k(s)} [Lrp^*]^{m(s)} [Lrp]^{l(s)}}{1 + \sum_{s \in OFF} e^{-\Delta G_s / RT} [IHF]^{n(s)} [FimE]^{j(s)} [FimB]^{k(s)} [Lrp^*]^{m(s)} [Lrp]^{l(s)}},$$
and

$$g = \frac{\sum_{s \in ON} \alpha_s e^{-\Delta G_s / RT} [IHF]^{n(s)} [FimE]^{j(s)} [FimB]^{k(s)} [Lrp^*]^{m(s)} [Lrp]^{l(s)}}{1 + \sum_{s \in ON} e^{-\Delta G_s / RT} [IHF]^{n(s)} [FimE]^{j(s)} [FimB]^{k(s)} [Lrp^*]^{m(s)} [Lrp]^{l(s)}}.$$

(1) : evolution of **Pon**, **probability of piliation switch being ON**. **Assume:** two state Markov process, regulatory protein binding/unbinding fast relative to switch rate. **Consequence**: Master eq form, stat thermo f and g.

State table for invertible element

IHF binding site

	FimE/B binding site				Free energies of binding						
		Ļ	Lrp binding sit		sites	Swite	Switching rate				
State	▼ P _{IHF}	P _{FimE/B}	¥ Lrp-A	Lrp-3	ΔG	α	n	j	k	m	1
1/9	-	-	-	-	0	0	0	0	0	0	0
2/10	IHF	-	-	-	$\Delta G_2 / \Delta G_2$	0	1	0	0	0	0
3/11	IHF	FimE	-	-	$\Delta G_3 / \Delta G_7$	α_1/α_4	1	0	1	0	0
4/12	IHF	FimB	-	-	$\Delta G_4/\Delta G_8$	α_2/α_3	1	1	0	0	0
5/13	IHF	FimE	Lrp*	-	$\Delta G_{3la}\!/\Delta G_{7la}$	$\alpha_{1la}/\alpha_{4la}$	1	0	1	4	0
6/14	IHF	FimE	Lrp*	Lrp	$\Delta G_{3lb}\!/\Delta G_{7lb}$	$\alpha_{1lb}/\alpha_{4lb}$	1	0	1	4	2
7/15	IHF	FimB	Lrp*	-	$\Delta G_{4la}\!/\Delta G_{8la}$	$\alpha_{2la}/\alpha_{3la}$	1	1	0	4	0
8/16	IHF	FimB	Lrp*	Lrp	$\Delta G_{4lb}\!/\Delta G_{8lb}$	$\alpha_{2lb}/\alpha_{3lb}$	1	1	0	4	2
17/27	-	FimE	-	-	$\Delta G_{33}\!/\Delta G_{77}$	0	0	0	1	0	0
18/28	-	FimB	-	-	$\Delta G_{44}\!/\!\Delta G_{88}$	0	0	1	0	0	0
19/29	-	FimE	Lrp*	-	$\Delta G_{33la}\!/\Delta G_{77la}$	0	0	0	1	0	0
20/30	-	FimE	Lrp*	Lrp	$\Delta G_{33lb}\!/\Delta G_{77lb}$	0	0	0	1	4	2
21/31	-	FimB	Lrp*	-	$\Delta G_{44la}\!/\Delta G_{88la}$	0	0	1	0	4	0
22/32	-	FimB	Lrp*	Lrp	$\Delta G_{44lb}\!/\Delta G_{88lb}$	0	0	1	0	4	2
23/33	-	-	Lrp*	-	$\Delta G_{3a}\!/\!\Delta G_{7a}$	0	0	0	0	4	0
24/34	-	-	Lrp*	Lrp	$\Delta G_{33a}\!/\!\Delta G_{77a}$	0	0	0	0	4	2
25/35	IHF	-	Lrp*	-	$\Delta G_{33b}\!/\Delta G_{77b}$	0	1	0	0	4	0
26/36	IHF	-	Lrp*	Lrp	$\Delta G_{3la}\!/\!\Delta G_{7la}$	0	1	0	0	4	2

e.g.,

 $p(3) = \frac{e^{-\Delta G_3/RT}[IHF][FimE]}{1 + e^{-\Delta G_2/RT}[IHF] + e^{-\Delta G_3/RT}[IHF][FimE] + e^{-\Delta G_4/RT}[IHF][FimB] + e^{-\Delta G_{3/a}/RT}[Lrp]^4[IHF][FimE]...}$

Complete phase variation network model (with *fimE* orientational control)

$$\frac{d}{dt} \begin{bmatrix} p_{1,1} \\ p_{0,1} \\ p_{0,0} \\ p_{1,0} \end{bmatrix} = \begin{bmatrix} -g(+) & f(+) & 0 & e_n \\ g(+) & -f(+) - e_f & 0 & 0 \\ 0 & e_f & -f(-) & g(-) \\ 0 & 0 & f(-) & -g(-) - e_n \end{bmatrix} \begin{bmatrix} P_{1,1} \\ P_{0,1} \\ P_{0,0} \\ P_{1,0} \end{bmatrix}$$

mean $ON=NP_{on}(t)$ standard dev.= $NP_{on}(t)(1-P_{on}(t))$

Results

Question Addressed

•Basic switch operation: sense environment, actuate weakly ON

•Source of ON-to-OFF specificity of FimE?

- •Why *two* independent recombinases when one would suffice?
- •Role of *orientational control* of *fimE*?
- •How is temperature control achieved? (*tuned to mammalian body temperature*)

The *fim* network: from environment to behavior

The *fim* network: controllable behaviors

The *fim* network: primary mechanisms

Mechanism 1: A recombinase ratio controlled switch

Environment \longrightarrow [H-NS] \longrightarrow [FimE]/[FimB] \longrightarrow ON or OFF, Fast or Slow

• Implemented by (1) differential H-NS repression of *fimB*, *fimE*, (2) competitive binding of FimB, FimE to switch, (3) FimE's strong ON-to-OFF bias

• Robust P_{on}^* vs. sensitive τ , decoupled control (can control for changes in response time, detachment without changing %ON, attachment)

Mechanism 2: A temperature tuning motif

• Local maximum in switch rate corresponds to local maximum in Lrp site-1,2 occupancy

•Common regulatory motif (e.g., OmpF, gltBDF,...)

Mechanism 3: A time delay

• *fimE* orientational control acts as switch memory, delay (keeps switch on long enough to build pili), and prevents chatter.

Synergy between mechanisms

•Recombinase ratio based control and the phenotype tuning motif intersect through the *heights of the sigmoid asymptotes and slopes of transition regions*.

•Sigmoidal along [FimE]/[FimB] axis, inverted parabolic along [Lrp] axis.

•fimE orientational control increases sensitivity to environment, through [FimB].

fim as digital circuit: a stochastic pulse generator

Design questions from literature

•Why two independent recombinases when one would suffice?

•Role of *orientational control* of *fimE*?

•How is temperature control achieved? (tuned to mammalian body temperature)

Why Two Recombinases?

•One recombinase model

Not sigmoidal -> cannot act as small-signal switch
Lost of environmental control
Diminished, decoupling of response speed and %ON

Evolutionary advantage to sensitive, **robust** control & **decoupling** of **response speed** and **%ON** control/robustness/parameter sensitivity?

Design questions from literature

•Why two independent recombinases when one would suffice?

•Role of *orientational control* of *fimE*?
•How is temperature control achieved? (*tuned to mammalian body temperature*)

•Role of *orientational control* of *fimE*?

(1) Memory, (2) delay (keeps switch on long enough to build pili), (3) environmental sensitivity, (4) prevents chatter.

•How is temperature control achieved? (tuned to mammalian host)

The *fim* network: an overview

Pathways to infection

•P1: Outside of host (unpiliated) \implies inside host (piliated)

 $T \uparrow \Longrightarrow H-NS$ derepression \Longrightarrow [FimE]/[FimB] \downarrow , [Lrp] \uparrow , Lrp-A occupied •P2: Exfoliation in host

Medium richness $\uparrow \implies [FimE]/[FimB] \uparrow, [Lrp] \downarrow$

•P3: Fever in host

T>37degC \Longrightarrow [FimE]/[FimB] \downarrow , [Lrp] \uparrow , Lrp-A,3 occupied

Results Summary

- *Two* vs. one recombinasesigmoid, decoupling, robustness
- ON-to-OFF *specificity of FimE* caused by switching rates, not binding affinities

 Orientational control of fimE %ON(min), time ON greater, +redundant fimE spec. Memory, increased sensitivity to environment
 Temperature tuning to mammalian body temperature •Lrp site occupancy

Lrp dimer

•General mechanism for phenotype tuning to environment

Future work (?)

•What game are we playing?•3-D disease model.

Coming attractions

BioSPICE specs., algorithms

- Construct connectivity matrices
- Find optimal ordering for block diagonal, matrix pencil
- Identify and categorize destabilizing forces: catalytic elements, pairs, +/- feedback loops
- •...and so on...

The End

Question Addressed

•Source of ON-to-OFF *specificity of FimE*? .3/cell/gen vs 10⁻⁴/cell/gen

•Why two independent recombinases when one would suffice?

- •Role of *orientational control* of *fimE*?
- •How is temperature control achieved? (*tuned to mammalian body temperature*)

FimE ON-to-OFF specificity

Depends on operating points.

For most, switching rates dominate, not binding affinities.

System-level Questions

•Basic switch operation:

- •Source of ON-to-OFF specificity of FimE?
- •Why *two* independent recombinases when one would suffice?
- •Role of *orientational control* of *fimE*?

•How is temperature control achieved? (tuned to mammalian body temperature)

fimE Orientational Control (OC)

•Ensures switch ON long enough to build pili

- •Increases sensitivity to growth medium, temp
- •Adds stochasticity (increases turn OFF/detachment rate noise)

Q: Does *fimE* orientational control contribute to FimE specificity?A: Yes and no. No, in that ..

*(*Time ON and minimum %ON greater than it would be without orientational control)* *Yes, in that IF FimE unstable, OC maintains specificity even if high OFF-to-ON rate (acts as redundant mechanism)

System-level Questions

•Basic switch operation:

•Source of ON-to-OFF specificity of FimE?

•Why two independent recombinases when one would suffice?

•Role of *orientational control* of *fimE*?

•How is temperature control achieved? (*tuned to mammalian body temperature*)

1/*tau*

Hypothesis Development

Hypothesis: *local maximum in switch rate corresponds to local maximum in Lrp site-1,2 occupancy*

Hypothesis tested, confirmed, generalized

Data \Rightarrow binding affinities \Rightarrow max occurs at physiologic [Lrp], T=37

General mechanism? Evolutionarily plausible for phenotype 'tuning' (e.g. b-galactosidase operon, osmoregulatory porin regulation)

Maximum # extrema = (# energetically separated binding site clusters) - 1

Future Work Plans

Study virulence

•E. coli cell/population model + tissue model \implies *disease analysis*

Genetic engineering

•Control motif library \implies genetic circuit CAD

design and build multi-dimensional gene expression/repression systems

Model invertible element

Associated with *probability distribution* P(t)

P_{on} = **Probability switch is in ON position**

ASSUME: Markov process → **Master Equation** formulation

•

$$P_{on}(t) = W_{off-to-on} (1 - P_{on}(t)) - W_{on-to-off} P_{on}(t)$$

Mathematical expressions of behavioral descriptors P_{on}^{*} , P(t'), τ

•Without *fimE* orientational control

$$P_{on}^{*} = f/(f+g)$$
 and time constant $\tau = 1/(f+g)$
 $P(t')_{on \to off} = g \times e^{-gt'}$

•With *fimE* orientational control

$$P^{*}_{on} = \frac{\frac{g(+)f(-)}{e_{n}} + \frac{f(+)f(-)}{e_{f}} + f(-)}{\frac{g(+)f(-)}{e_{n}} + \frac{f(+)f(-)}{e_{f}} + \frac{g(+)f(-)}{e_{f}} + \frac{g(+)g(-)}{e_{n}} + f(-) + g(+)}{e_{n}}}$$

$$P(t')_{on \to off} = g(-)e^{-(g(-)+e_{n})t'} + g(+)e^{-g(+)t'}\left(1 - e^{-e_{n}t'}\right)$$

Environmental control

Decoupling of Equilibrium %ON, Response Speed

Both sigmoids - sensitive, insensitive regions w/ respect to [FimE]/[FimB]
Sigmoid Max/Min asymptotes

same parameters

•different - **Pon*** controlled by **relative** differences, *tau* controlled by **absolute** values

•Coupled by *alpha*= [FimE]/[FimB]
•<u>Decoupled</u> by [FimE], [FimB], switching rates, binding affs

Consequence: can control for changes in response time, detachment without changing equilibrium %ON, attachment