Control of the Pathogenic fim Switch in E. coli

Denise Wolf and Adam Arkin

Molecular Control of Infection Dynamics

Type-1 Pili

-Benefits

- Avoid being washed away (adherence)
- Opportunities for rapid replication (invasion, factory mode)
-Opportunities for recurrence (invasion, quiescent mode)
- Costs

-Activation of immune system, rapid clearance of infection
-Detract from survival outside host - agglutination, lack of good target
-Energy requirements
- fim control circuit balances conflicting demands for survival
-Heterogenous, two-state population, stochastic phase variation
-Switching rate, piliation level, attachment, detachment, growth rates adapt s.t.
-Persistent infection
- Avoidance of neutrophil spike
-Quiescent pockets for recurrence
-Locally responsive to state of environment, host, disease process phase

Genetic Make-Up of the Fimbriation Switch

This compact integrated circuit can

- Mediate the \% of cells that have pili.
- Control the rate at which a population changes piliation state
- Sense the temperature of the host to mediate switching
- Sense the amount of nutrient in the medium.

System-level Questions

How does network architecture accomplish phase variation control?
-Basic switch operation:
How does circuit sense the environment and control piliation level, attachment, detachment, invasion rates to balance demands of infection?
-Design questions:
-Why two independent recombinases?
-Source of ON-to-OFF specificity of FimE?
(hypothesized binding affinities, orient control)
-Role of orientational control of fimE?
-How is temperature control achieved?
(tuned to mammalian body temperature)
Regulatory motifs?

Mathematical model

Invertible element

$$
\begin{aligned}
\frac{d P_{o n}}{d t}= & f\left(1-P_{o n}\right)-g P_{o n} \quad \text { (1) } \\
& \text { with } \quad \text { Equilibrium statistical thermody } \\
f= & \sum_{s \in O F F} \alpha_{s} e^{-\Delta G_{s} / R T}[\text { IHF }]^{n(s)}[\text { FimE }]^{j(s)}[\text { FimB }]^{k(s)}[\text { Lrp }]^{m(s)}[\text { Lrp }]^{l(s)} \\
& 1+\sum_{s \in O F F} e^{-\Delta G_{s} / R T}[\text { IHF }]^{n(s)}[\text { FimE }]^{j(s)}[\text { FimB }]^{k(s)}[\text { Lrp }]^{m(s)}[\text { Lrp }]^{l(s)}
\end{aligned},
$$

(1) : evolution of Pon, probability of piliation switch being ON. Assume: two state Markov process, regulatory protein binding/unbinding fast relative to switch rate. Consequence: Master eq form, stat thermo f and g.

State table for invertible element

IHF binding site

		$\mathrm{imE}_{\downarrow}$		site inding	Free sites	nergies Swit	of	ra			
State	$\mathrm{P}_{\text {IHF }}$	$\mathrm{P}_{\text {FimE/B }}$	Lrp-A	Lrp-3	$\Delta \mathrm{G}$	α	n	j	k	m	1
1/9	-	-	-	-	0	0	0	0	0	0	0
2/10	IHF	-	-	-	$\Delta \mathrm{G}_{2} / \Delta \mathrm{G}_{2}$	0	1	0	0	0	0
3/11	IHF	FimE	-	-	$\Delta \mathrm{G}_{3} / \Delta \mathrm{G}_{7}$	α_{1} / α_{4}	1	0	1	0	0
4/12	IHF	FimB	-	-	$\Delta \mathrm{G}_{4} / \Delta \mathrm{G}_{8}$	α_{2} / α_{3}	1	1	0	0	0
5/13	IHF	FimE	Lrp*	-	$\Delta \mathrm{G}_{3 \mathrm{la}} / \Delta \mathrm{G}_{7 \mathrm{la}}$	$\alpha_{112} / \alpha_{4 l a}$	1	0	1	4	0
6/14	IHF	FimE	Lrp*	Lrp	$\Delta \mathrm{G}_{31 \mathrm{l}} / \Delta \mathrm{G}_{71 \mathrm{l}}$	$\alpha_{116} / \alpha_{4 l b}$	1	0	1	4	2
7/15	IHF	FimB	Lrp*	-	$\Delta \mathrm{G}_{4 \mathrm{la}} / \Delta \mathrm{G}_{8 \mathrm{la}}$	$\alpha_{2 l a} / \alpha_{3 l a}$	1	1	0	4	0
8/16	IHF	FimB	Lrp*	Lrp	$\Delta \mathrm{G}_{4 \mathrm{lb}} / \Delta \mathrm{G}_{81 \mathrm{~b}}$	$\alpha_{216} / \alpha_{31 b}$	1	1	0	4	2
17/27	-	FimE	-	-	$\Delta \mathrm{G}_{33} / \Delta \mathrm{G}_{77}$	0	0	0	1	0	0
18/28	-	FimB	-	-	$\Delta \mathrm{G}_{44} / \Delta \mathrm{G}_{88}$	0	0	1	0	0	0
19/29	-	FimE	Lrp*	-	$\Delta \mathrm{G}_{331 \mathrm{a}} / \Delta \mathrm{G}_{77 \mathrm{la}}$	0	0	0	1	0	0
20/30	-	FimE	Lrp*	Lrp	$\Delta \mathrm{G}_{3311} / \Delta \mathrm{G}_{771 \mathrm{~b}}$	0	0	0	1	4	2
21/31	-	FimB	Lrp*	-	$\Delta \mathrm{G}_{441 \mathrm{la}} / \Delta \mathrm{G}_{88 \mathrm{la}}$	0	0	1	0	4	0
22/32	-	FimB	Lrp*	Lrp	$\Delta \mathrm{G}_{441 \mathrm{l}} / \Delta \mathrm{G}_{881 \mathrm{~b}}$	0	0	1	0	4	2
23/33	-	-	Lrp*	-	$\Delta \mathrm{G}_{3 \mathrm{a}} / \Delta \mathrm{G}_{7 \mathrm{a}}$	0	0	0	0	4	0
24/34	-	-	Lrp*	Lrp	$\Delta \mathrm{G}_{33 \mathrm{a}} / \Delta \mathrm{G}_{77 \mathrm{a}}$	0	0	0	0	4	2
25/35	IHF	-	Lrp*	-	$\Delta \mathrm{G}_{33 \mathrm{~b}} / \Delta \mathrm{G}_{77 \mathrm{~b}}$	0	1	0	0	4	0
26/36	IHF	-	Lrp*	Lrp	$\Delta \mathrm{G}_{31 \mathrm{l}} / \Delta \mathrm{G}_{7 \mathrm{la}}$	0	1	0	0	4	2

e.g.,

$$
p(3)=\frac{e^{-\Delta G_{3} / R T}[\text { IHF }][\text { FimE }]}{1+e^{-\Delta G_{2} / R T}[\text { IHF }]+e^{-\Delta G_{3} / R T}[\text { IHF }][\text { FimE }]+e^{-\Delta G_{4} / R T}[\text { IHF }][\text { FimB }]+e^{-\Delta G_{3 l a} / R T}[\operatorname{Lrp}]^{4}[\text { IHF }][\text { FimE }] \ldots} .
$$

Complete phase variation network model (with fimE orientational control)

Single Cell \square Population


```
mean \(\mathrm{ON}=\mathrm{NP}_{\text {on }}(\mathrm{t})\)
standard dev. \(=\mathrm{NP}_{\mathrm{on}}(\mathrm{t})\left(1-\mathrm{P}_{\mathrm{on}}(\mathrm{t})\right)\)
```

Results

Question Addressed

- Basic switch operation: sense environment, actuate weakly $\mathrm{ON} \underset{\sim}{\Delta}$ strongly OFF
-Source of ON-to-OFF specificity of FimE?
-Why two independent recombinases when one would suffice?
-Role of orientational control of fimE?
-How is temperature control achieved? (tuned to mammalian body temperature)

The fim network: from environment to behavior

The fim network: controllable behaviors

The fim network: primary mechanisms

Mechanism 1: A recombinase ratio controlled switch

Environment $\longrightarrow[\mathrm{H}-\mathrm{NS}] \longrightarrow[\mathrm{FimE}] /[\mathrm{FimB}] \longrightarrow$ ON or OFF, Fast or Slow

- Implemented by (1) differential H-NS repression of fimB, fimE, (2) competitive binding of FimB, FimE to switch, (3) FimE's strong ON-to-OFF bias
- Robust $\mathrm{P}_{\text {on }}{ }^{*}$ vs. sensitive τ, decoupled control (can control for changes in response time, detachment without changing \%ON, attachment)

Mechanism 2: A temperature tuning motif

Temp, medium \longrightarrow [Lrp],[leucine] \longrightarrow Lrp-A, 3 occupancy \longrightarrow max in piliation level at 37degC

- Local maximum in switch rate corresponds to local maximum in Lrp site-1,2 occupancy
-Common regulatory motif (e.g., OmpF, gltBDF,...)

Mechanism 3: A time delay

- fimE orientational control acts as switch memory, delay (keeps switch on long enough to build pili), and prevents chatter.

Synergy between mechanisms

-Recombinase ratio based control and the phenotype tuning motif intersect through the heights of the sigmoid asymptotes and slopes of transition regions.
-Sigmoidal along [FimE]/[FimB] axis, inverted parabolic along [Lrp] axis .

- fimE orientational control increases sensitivity to environment, through [FimB].

fim as digital circuit: a stochastic pulse generator

fim switch

Design questions from literature

-Why two independent recombinases when one would suffice?

- Role of orientational control of fimE?
-How is temperature control achieved? (tuned to mammalian body temperature)

Why Two Recombinases?

-One recombinase model

-Not sigmoidal -> cannot act as small-signal switch

- Lost of environmental control
-Diminished, decoupling of response speed and $\% \mathrm{ON}$

Evolutionary advantage to sensitive, robust control \& decoupling of response speed and $\% \mathbf{O N}$ control/robustness/parameter sensitivity?

Design questions from literature

-Why two independent recombinases when one would suffice?
-Role of orientational control of fimE?
-How is temperature control achieved? (tuned to mammalian body temperature)
-Role of orientational control of fimE?

(1) Memory, (2) delay (keeps switch on long enough to build pili), (3) environmental sensitivity, (4) prevents chatter.
-How is temperature control achieved? (tuned to mammalian host)
a)

The fim network: an overview

Pathways to infection

\cdot P1: Outside of host (unpiliated) \Longrightarrow inside host (piliated)
$\mathrm{T} \uparrow \Longrightarrow \mathrm{H}$-NS derepression $\Longrightarrow[$ FimE $] /[$ FimB $] \downarrow,[$ Lrp $] \uparrow$, Lrp-A occupied
-P2: Exfoliation in host
Medium richness $\uparrow \Longrightarrow[F i m E] /[F i m B] \uparrow,[L r p] \downarrow$
-P3: Fever in host
$\mathrm{T}>37 \mathrm{degC} \Longrightarrow[\mathrm{FimE}] /[\mathrm{FimB}] \downarrow,[$ Lrp $] \uparrow$, Lrp-A, 3 occupied

Results Summary

-Robust [FimE]/[FimB], [Lrp] controlled switch:

- $\% \mathrm{ON} *$ and response speed control decoupled
- Two vs. one recombinasesigmoid, decoupling, robustness
- ON-to-OFF specificity of FimE caused by switching rates, not binding affinities
- Orientational control of fimE
\%ON(min), time ON greater, +redundant fimE spec.
Memory, increased sensitivity to environment
-Temperature tuning to mammalian body temperature
-Lrp site occupancy

-General mechanism for phenotype tuning to environment

Future work (?)

OUTSIDE HOST
-What game are we playing?
-3-D disease model.

Coming attractions

B. subtilis sporulation initiation

- 48 molecular species
- Devices: two-component, phosphorelay, agonist/antagonist pair operons, import/export timing loops.
- >8 feedback loops, $2(-), 6(+)$
- Signal integration, amplification, noise filtering?

BioSPICE specs., algorithms

- Construct connectivity matrices
- Find optimal ordering for block diagonal, matrix pencil
- Identify and categorize destabilizing forces: catalytic elements, pairs,
+/- feedback loops
-...and so on...

The End

Question Addressed

-Source of ON-to-OFF specificity of FimE? .3/cell/gen vs $10^{-4} /$ cell/gen
-Why two independent recombinases when one would suffice?
-Role of orientational control of fimE?
-How is temperature control achieved? (tuned to mammalian body temperature)

FimE ON-to-OFF specificity

Depends on operating points.

For most, switching rates dominate, not binding affinities.

System-level Questions

-Basic switch operation:
-Source of ON-to-OFF specificity of FimE?
-Why two independent recombinases when one would suffice?

- Role of orientational control of fimE?
-How is temperature control achieved? (tuned to mammalian body temperature)

fimE Orientational Control (OC)

- Ensures switch ON long enough to build pili
- Increases sensitivity to growth medium, temp
- Adds stochasticity (increases turn OFF/detachment rate noise)

Q: Does fimE orientational control contribute to FimE specificity?
A: Yes and no. No, in that ..
*(Time ON and minimum \%ON greater than it would be without orientational control)
*Yes, in that IF FimE unstable, OC maintains specificity even if high OFF-to-ON rate (acts as redundant mechanism)

System-level Questions

-Basic switch operation:
-Source of ON-to-OFF specificity of FimE?
-Why two independent recombinases when one would suffice?
-Role of orientational control of fimE?
-How is temperature control achieved? (tuned to mammalian body temperature)

1/tau

Local maximum in switching rate in fimE- mutant at 37 deg C

Hypothesis Development

-FimE out of picture...forget alpha=[FimE]/[FimB]
\cdot know switching rate monotonic in [FimB]
-Simplest answer: [FimB] has local max w/Temp.....no, not the way H-NS works.
-Lrp?
-H-NS represses lrp, H-NS controlled by T, so T $\sqrt{ }$ should imply Lrp \rrbracket
-How does Lrp bind to switch?

-Three sites. Either (1), (2) bound with Lrp, or (1),(2),(3) bound with Lrp
-If site (3) mutated out, switching rate $\hat{\|}$ (leucine experiments)

Hypothesis: local maximum in switch rate corresponds to local maximum in Lrp site-1,2 occupancy

Hypothesis tested, confirmed, generalized

Model

Data \Rightarrow binding affinities \Rightarrow max occurs at physiologic $[\mathrm{Lrp}], \mathrm{T}=37$

General mechanism? Evolutionarily plausible for phenotype 'tuning' (e.g. b-galactosidase operon, osmoregulatory porin regulation)

Maximum \# extrema = (\# energetically separated binding site clusters) - 1

Future Work Plans

Study virulence

\bullet E. coli cell/population model + tissue model \Longrightarrow disease analysis

Genetic engineering

\cdot Control motif library \Longrightarrow genetic circuit CAD
design and build multi-dimensional gene expression/repression systems

Model invertible element

Stochastic process: $\mathbf{X}(\mathbf{t}) \in\{0,1\}$ equiv $\{\mathbf{O F F}, \mathbf{O N}\}$

Associated with probability distribution $\mathbf{P}(\mathbf{t})$

$\mathbf{P}_{\text {on }}=$ Probability switch is in ON position

ASSUME: Markov process $\boldsymbol{\rightarrow}$ Master Equation formulation

$$
P_{o n}(t)=\mathbf{W}_{\text {off-to-on }}\left(1-P_{o n}(t)\right)-\mathbf{W}_{\text {on-to-off }} P_{\text {on }}(t)
$$

$\underline{\text { Mathematical expressions of behavioral descriptors } \mathrm{P}_{\mathrm{on}}{ }^{*}, \mathrm{P}\left(\mathrm{t}^{\prime}\right), \tau}$

-Without fimE orientational control

$$
\begin{aligned}
& P_{o n}^{*}=f(f+g) \text { and time constant } \tau=1 /(f+g) \\
& P\left(t^{\prime}\right)_{o n \rightarrow o f f}=g \times e^{-g t^{\prime}}
\end{aligned}
$$

-With fimE orientational control

$$
\begin{aligned}
& P_{o n}^{*}=\frac{\frac{g(+) f(-)}{e_{n}}+\frac{f(+) f(-)}{e_{f}}+f(-)}{\frac{g(+) f(-)}{e_{n}}+\frac{f(+) f(-)}{e_{f}}+\frac{g(+) f(-)}{e_{f}}+\frac{g(+) g(-)}{e_{n}}+f(-)+g(+)} \\
& P\left(t^{\prime}\right)_{o n \rightarrow o f f}=g(-) e^{-\left(g(-)+e_{n}\right) t^{\prime}}+g(+) e^{-g(+) t^{\prime}}\left(1-e^{\left.-e_{n} t^{\prime}\right)}\right)
\end{aligned}
$$

Environmental control

Decoupling of Equilibrium \%ON, Response Speed

-Both sigmoids - sensitive, insensitive regions w/ respect to [FimE]/[FimB] -Sigmoid Max/Min asymptotes
-same parameters
-different - Pon* controlled by relative differences, tau controlled by absolute values
-Coupled by alpha= [FimE]/[FimB]
-Decoupled by [FimE], [FimB], switching rates, binding affs
Consequence: can control for changes in response time, detachment without changing equilibrium $\%$ ON, attachment

