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STRUCTURE OF THE BIOINFORMATICS GRC

Surveying molecular information in cells

Biophysics of molecular interactions

New biological insights into primary data

Designing data relations for optimal understanding

Deduction of biological networks

Predictive algorithms and computational methods

Modeling single cells

Spatial and whole genome modeling

Cross-scale modeling

COX3

12.5

MCELL
Bartol, Stiles, Sejnowski

http://www.grc.uri.edu/programs/2001/bioinf.htm
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Tools for “multilevel” analysis

Finding Parts

Physical properties

Cellular networks
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Experiment

Data Storage Analysis

Knowledge Rep.

Models Data Comparison

Expansion

DetailingReduction Modules

Experimental
Design
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Building a problem solving environment
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Broker

Dealer Dealer

Local services Local services

Service ServiceControl

Requester

Distributed, loosely coupled, architecture
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Broker

Dealer Dealer

Local clients Local clients

ServiceControl

Requester

Many client services

Data Analysis

Bifurcation Analysis

Simulation and Visualization

Service
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Database services

Service
Local DB

Database access layer

Database

Reflection of 
remote DBsRemote DBs

Schema Compliant with
NCBI/BIND

GATC/MGED
GENBANK/PDB

AND Glue for Models
Not as nice as Shankar’s
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Broker

Dealer Dealer

Local services Local services

Service ServiceControl

Requester

Requester is the client
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GUI must represent biological models at different levels of abstraction.
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But how did we chose these icons?

We didn’t.
This is a big problem.
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Other Combinatorics
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So how do we represent this information?

Depends on the data
Two/one hybrid data
Surface Plasmon Resonance
F.R.E.T.
Foot Printing

Depends on the model
Graphical
Thermodynamic
Kinetic

HYBRID
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Graphical Models: An incredibly stupid example!

X1 X2 | Y1
0 0 |  1
0 1 |  1
1 0 |  0
1 1 |  0

X1 X2 | Y1
0 0 |  0
0 1 |  0
1 0 |  0
1 1 |  1

X1

X2

Y1
X1

X2

Y1
X1

X2

Y1

X1 X2 | Y1
0 0 |  0
0 1 |  1
1 0 |  1
1 1 |  1

0.75 0.75

1
1

0.5
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Obviously, our data will be more complicated

Samoilov, Arkin, Ross, Chaos, 11(1):108-114
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This gets into models and modules but…..

For graphical models data representation can be VERY simple at first.
For more complicated models we have to consider 

1) What is a molecule?
Should we represent p53 as 1 molecule with 227 states?

2) What is an interaction?
Influence?
Direct binding?
How do we associate different data types with it?

3) How do we relate data at different “model levels” together?
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Knowledge representation for data classification and analysis

Data Ontology

Analysis Ontology

Mathematical Ontology

Cellular Ontology

Aid to user in decision making.
Allows for data fusion.

Motion, Shape Change, Transport, Transformation

Differential, Algebraic, Stochastic

For now:
Ontologies= Explicit specification of a conceptualization
Schema= A structure of tables in a database
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Knowledge representation for data classification and analysis

Cellular Ontology

Compartment Motion Compartment Shape Transport Processes Chemical Transformation

Passive Active

Gene expression

Bioontologies: http://smi-web.stanford.edu/projects/bio-ontology/
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Leaves of the ontologies: Cellular

Gene expression

Transcription Translation

Initiation RBS Binding

Forms a hierarchy for modeling and data

Elongation Termination

Two-D gels

Gene microarrays

AFM/Laser tweezers



Aspen Center for Physics- Cellular Signaling Workshop 29

Leaves of the ontologies: Cellular

Gene expression

Transcription Translation

Initiation RBS Binding

Forms a hierarchy for modeling and data

Elongation Termination

Model 1

Model 2

Model 3
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Experiment

Data Storage Analysis

Knowledge Rep.

Models Data Comparison

Expansion

DetailingReduction

So we need to know at which level a model is made
And we need to know at what level data is collected 

Once we know these we can design

Schema to support this
Analyses to validation models and test hypotheses.
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Technical fields for data comparison

Data base schema
Assumed to contain

Organism
Strain
Protocols
Etc.

For every piece of “data” in the data base

Comparison Tables

Provenance

Type

Method

Quality

Revision

Alternate
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Comparison Tables

Provenance

Source1,Source2,…

Authors
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Comparison Tables

Type

Hypothetical

Calculated

Indirect

Direct
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Comparison Tables

Method

HMM Predicted

Two-Hybrid

Microarray

Mass Spec
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Comparison Tables

Quality

Format Correctness Checked

Relevance Scores

Interpretation Scores

Reproducibility

Current Accepted Data
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Comparison Tables

Revisions

Author

Date

Why
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Comparison Tables

Alternatives

Author

Date

Why
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Alternatives are especially important for model data bases.

A model is a collection of data of a particular sort and hypotheses.

Evidence: Homology

Direct Deduction

Two Hybrid

Hypothetical

Alternative



Aspen Center for Physics- Cellular Signaling Workshop 39

Type-1 Pili Phase Variation in Pathogenic E. coli

piliated unpiliated

One of the Simplest Genetic Switches
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The Modeling Process: Bottom Up!

Equilibrium statistical thermodynamics for f, g

Protein degradation

This pathway is diagramed 
using a notation. Stochastic 
models are chosen for the 
DNA, and deterministic 
models for the proteins. 

This is a hybrid model at the molecular level of abstraction. This 
now becomes a submodel of a larger infection model.
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Expert Logical Abstraction

Any expert examining these results can rapidly deduce a 
logical control diagram. This is not a formal abstraction but 
could be used as the basis for a simpler (lower-resolution) 
model of the switch to be used in the larger simulation.
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S(k)S(k+1)

fimE(k)fimE(k+1)

I(fimB)

D3

D2

D1

D3: OFF to ON delay
D2: ON to OFF delay

S(k)

I(fimB)

fimE(k)

S=ON
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Since biological models must represent models at these different levels of abstraction

How we represent molecules is VERY important.

Either we store models as unrelated directly to primary data in the database as a lump 
of variables and equations

Hard to modify
Hard to relate to data
Hard to deal with a family of models
Hard to deal with a linked set of abstractions (stay tuned)

Or we ensure that the objects that models describe are represented for modeling.

If a phosophylatable protein is one molecule with internal state, 
how does a model specification refer to it?

If we represent all states the DB gets bloated?

If states group how do we group them?
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Adam’s ignorant scheme

1. If data exists on a particular state of a molecule it is given its own record

2. This record is referenced back to the “parent” molecules 

1. Defined as the molecules from which this molecule may be created.

3. If data on a particular “possible” state does not exist do the same thing.

4. Define equivalence class specifications

1. This is a model object!
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Representation and interoperability: Models can be passed around

CellML- http://www.cellml.org

SBML- http://www.cds.caltech.edu/erato/

JOIN THE DISCUSSION NOW!

These specifications are designed for sending models to simulators.
But what if there is data comparison, etc.

However, this is “middleware” and can solve a plethora of problems
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Broker

Dealer Dealer

Local services Local services

Service ServiceControl

Requester

Distributed, loosely coupled, architecture
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Conclusions
• Data representation is the lowest level of 

representation of biological knowledge
• Models are particular “statements” of this 

knowledge.
• Databases and models must be linked for 

comparison
• How schema should be designed to facilitate this 

is research
– Much can be fixed post-facto with “middleware”
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Data analysis, Modules and 
Models

Prospectus and Problems
Pessimistic optimism

Panglossian Pessimism
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Data analysis

An Example of Effect Detection
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Questions
• What’s my question?

– Does this perturbation have an effect?
– Is loss of this interaction responsible for X?
– Can the known network reproduce dynamics?

• What experimental design best answers my 
question?

• Do I need complicated statistics?
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Graphical Models: An incredibly stupid example!

X1 X2 | Y1
0 0 |  1
0 1 |  1
1 0 |  0
1 1 |  0

X1 X2 | Y1
0 0 |  0
0 1 |  0
1 0 |  0
1 1 |  1

X1

X2

Y1
X1

X2

Y1
X1

X2

Y1

X1 X2 | Y1
0 0 |  0
0 1 |  1
1 0 |  1
1 1 |  1
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Graphical Models: An incredibly stupid example!

X1 X2 | Y1
0 0 |  1
0 1 |  1
1 0 |  0
1 1 |  0

X1 X2 | Y1
0 0 |  0
0 1 |  0
1 0 |  0
1 1 |  1

X1 X2 | Y1
0 0 |  0
0 1 |  1
1 0 |  1
1 1 |  1

For simple discrete combinational data, we can enumerate all possible states and 
deduce directly.

For sequential data, large combinational data or continuous data things become more 
complicated.

We need roughly measures of the sort:

P(Y=y | X1,X2,…)
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Simpler Question

Effect Detection
Guri Giaever and Ron Davis

(confidential and VERY early)
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Yeast Haploinsufficiency Trials

X

Universal PCR Primer

Universal PCR Primer

Upstream bar code

Downstream bar code

Resistance Marker
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Universal PCR Primer

Universal PCR Primer

Upstream bar code

Downstream bar code

Resistance Marker

So there are 8 bar codes:

Up
Down

Antisense Up
Antisense Down

Mismatches for all
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Yeast Haploinsufficiency Trials

Sample every 0.5 population doubling.
Dilute sample to standard OD.
Examine on chip.

Over 5000 growth curves

Time

In
te

ns
ity
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Yeast Haploinsufficiency Trials

Drop drug in!

Over 5000 growth curves

Time

In
te

ns
ity

This guy now drops out!
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Yeast Haploinsufficiency Trials

Drop drug in!

Over 5000 growth curves

Time

In
te

ns
ity

Is this guy dropping out?
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Approach

1. Look at time course, fit to growth curve, score by decay
2. Look at time zero, look at time=T, score by ratio

3. Develop likelihood measure. (A stupid but effective one)
1. Decide on a standard condition
2. Do N replicates at each generation time
3. Estimate the distribution of intensity for each tag at a 
given time.
4. Score new experiments as the probability of being 
drawn from that distribution.
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Different Chip Lot
Different Sample
Different Day
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YJR097W

alpha-tubulin, mitotic chromosome 
segregation*, structural protein 
of cytoskeleton, spindle pole body

Tub1YML085C

cytochrome P450 lanosterol 14a-
demethylase, ergosterol
biosynthesis, lanosterol 14-alpha-
demethylase, endoplasmic reticulum

ERG11YHR007C

Experiment 6: Ket 20.2 hours
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alpha-tubulin, mitotic chromosome 
segregation*, structural protein of 
cytoskeleton, spindle pole body

Tub1YML085C

cytoplasmic protein involved in 
release of transport vesicles from the 
ER, non-selective vesicle assembly, 
molecular_function unknown, cytoplasm

Sec13YLR208W

multidrug resistance transporterPDR5,LEM1, 
YDR1

YOR153W
Hexose permease transportHXT12YIL170W
UNKUNKYPL165C

cytochrome P450 lanosterol 14a-
demethylase, ergosterol biosynthesis, 
lanosterol 14-alpha-demethylase, 
endoplasmic reticulum

ERG11YHR007C
Experiment 10: Mic 20 hours
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alpha-tubulin, mitotic chromosome 
segregation*, structural protein of 
cytoskeleton, spindle pole body

Tub1YML085C
Hexose permease transportHXT12YIL170W
UNKUNKYPL165C

multidrug resistance transporterPDR5,LEM1, 
YDR1

YOR153W

cytochrome P450 lanosterol 14a-
demethylase, ergosterol biosynthesis, 
lanosterol 14-alpha-demethylase, 
endoplasmic reticulum

ERG11YHR007C
Experiment 13: Clot 20.1 hours
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Ribosomal protein L27A, protein 
biosynthesis, structural protein of 
ribosome, cytosolic large ribosomal 
(60S)-subunit

RPL27AYJR097W

Cytoplasmic chaperonin subunit gamma, 
protein folding*, chaperone, cytoplasm

CCT3, BIN2, 
TCP3

YJL014W

alpha-tubulin, mitotic chromosome 
segregation*, structural protein of 
cytoskeleton, spindle pole bod

TUB3YML124C
Experiment 14: Noc 17.3 hours
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Simplified Data Upload
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Easy access to chips/requests for analysis
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Automated Statistical Analysis/QC
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Easy access to past analyses
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Automated Analysis/Target Hyp.
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Network Deduction and 
Modules

An incredibly naïve approach



Aspen Center for Physics- Cellular Signaling Workshop

Correlation Metric Construction

A method to deduce reaction pathways directly from 
concentration time-series measurements

Black Box

Outputs

Concentrations
Transcript Levels
etc.

Inputs

Temperature
pH
Pharmaceutical levels
etc.

Pei-dong Shen, Michael Samoilov, John Ross
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X1
*X2

*

E1

E3E4

E2

X5
*

E5

E6

X6
*

X4
* X3

*

I1I2

S3 S4S5

S6S7

This is an abstract biochemical NAND gateThis is an abstract biochemical NAND gate

Based on a mechanism at the 
heart of switching between the 
glycolytic and gluconeogenic
modes of the hexose phosphate 
pathway.

Can we deduce the network structure
by perturbing it with inflows of the inputs 
and measuring the response of the 
concentrations?
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Linear Correlation

o Measures the linear relationship between 
variables.

o May be extended to multiple dependencies
(i.e. y= f(x1,x2,x3...) by assumption of a
linear regression model. 

o Very difficult to tell the significance of a given 
correlation since no distributional assumptions 
are made.

Non-Parametric Rank Correlation (Spearman)

o Measures monotonic relationships between
variables.

o Like Linear Correlation except that distribution
of numbers is now known (uniform, exactly).

o Robust to data defects.
o Significances may be calculated...weak 

dependencies may be missed.

Transinformation

o Measures the constraint on one variable given 
knowledge of another; i.e., requires that one
variable merely be a function of the other.

o The distribution is the quantity actually 
calculated. c2 then provides an accurate measure of
significance. 

o Multiple dependencies easily incorporated by increasing the
dimension of the distribution. 

Measures of Dependency
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Chemical NAND Gate Correlation Functions
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C) Significant Connections

S4 S5 S6 S7
I1 -0.31
I2 -0.32
S3 -0.72 -0.71 -0.90 0.90
S6 -1.00

A) Eigenvectors, zk:

point/zk 1 2 3 4 5 6 7

2 (I2) 7.00e-01 5.26e-01 -4.30e-01 4.93e-02 1.42e-02 -8.20e-09 -3.52e-10
3 (S7) -4.20e-01 7.29e-03 -8.16e-03 2.05e-01 1.90e-03 -6.82e-09 -7.67e-09
4 (S6) -4.20e-01 7.29e-03 -8.16e-03 2.05e-01 1.90e-03 -9.58e-09 6.97e-09
5 (S4) -1.44e-01 -5.51e-01 -4.02e-01 -1.60e-01 -7.55e-02 -8.20e-09 -3.52e-10
6 (S5) -7.15e-02 5.60e-01 4.30e-01 -1.38e-01 -7.65e-02 -8.20e-09 -3.52e-10
7 (S3) -3.14e-01 3.49e-02 1.27e-02 -2.16e-01 1.16e-01 -8.20e-09 -3.52e-10

B) Eigenvalues, lk:

1 1.413496e+00 3.978311e-01 4.937104e-01
2 1.237497e+00 7.461268e-01 8.721279e-01
3 6.958617e-01 9.419783e-01 9.917824e-01
4 1.805556e-01 9.927960e-01 9.998381e-01
5 2.559576e-02 1.000000e+00 1.000000e+00
6 4.747935e-16 1.000000e+00 1.000000e+00
7 1.080736e-16 1.000000e+00 1.000000e+00

1 (I1) 6.68e-01 -5.84e-01 4.05e-01 5.51e-02 1.77e-02 -8.20e-09 -3.52e-10

k lk a1,k a2,k

Multidimension Scaling Solutions
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Classical Solution
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Hierarchical Cluster Diagram

Tightly coupled species are
grouped together.

Methodology for determining
tightly coupled pathways?

Or chemical subsystems that 
may be analyzed outside of the
rest of the circuit?

MORE ON MODULARITY:
STAY TUNED!
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*
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Correlation misses relationships such as this. Information is a better metric.

Samoilov, Arkin, Ross, Chaos, 11(1):108-114

Data problems: Theoretically N= 5*QM
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Some short thoughts on 
modules

Considerations
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How do we define modules?

1. Repeated units
2. Evolutionary conservation
3. Time scale separation

a. fast and slow manifolds (Michaelis Menten)
b. on at different times 

4. Spatial/Structural separation
a. no links between two subsystems
b. separated in space literally
c. weak coupling

5. Individually controllable
a. high impedances between subsystems?

Elliott will define more!
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Schematics for cells: Modules

Motif= A repeated pattern of interactions among objects

1. A motif
Module 2. An elementary functional unit

3. A compound functional unit that may be abstracted
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Chemotaxis Signal Transduction Pathways.
A motif? A module?
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Problems of combinatorics
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Problems of parameter sensitivity

Representation problems
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Problems of abstraction
R1

R2
R3

R4 R5

R6
Rth

Problems of assumptions
MMS P

E1

MM
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B-p

A A-p

⊕

Problems of composition 
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Brief Digression: Chemical Impedance

I A * ][)(                  ][][
2

1
21 I

k
kIAAkIk

dt
dA

t =⇒−= ∞→

So A is the signal inside the cell that I is outside the cell.
What if A signals to downstream targets by reacting with them?

A+B* C
][

][)(         [A][B] k- ][][
32

1
321 Bkk

IkIAAkIk
dt
dA

t +
=⇒−= ∞→

The rates and concentrations of downstream processes degrade  
the signal from A.
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Brief Digression: Chemical Impedance

I A * ][)(                  ][][
2

1
21 I

k
kIAAkIk

dt
dA

t =⇒−= ∞→

But what if reaction is by reversible binding?

A+B*↔C

2

1

4321

][)(

[C]k [A][B] k- ][][

k
IkIA

AkIk
dt
dA

t =

+−=

∞→

The rates and concentrations of downstream processes don’t affect the signal.


