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A unified type of response experiment is suggested for complex
systems made up of individual species (atoms, molecules, quasi-
particles, biological organisms, etc.). We make the following
assumptions: (i) some of the species may exist in two forms,
labeled and unlabeled, respectively; (ii) the kinetic and transport
properties of the labeled and unlabeled species are the same,
respectively (neutrality assumption); (iii) the experiment pre-
serves the total input and output fluxes; only the fractions of the
labeled compounds in the input and output fluxes are varied.
Under these circumstances a linear integral superposition law
connects the fractions of labeled species in the input and output
fluxes. This linear superposition law is valid for homogeneous
and inhomogeneous systems and for systems with intrinsic
(hidden) state variables; it arises from the neutrality condition
and holds even though the underlying dynamics of the process
may be highly nonlinear. Because this response law does not
involve the linearization of the evolution equations it has great
potential for the analysis of complex physical, chemical, and
biological systems. We compare our approach with the linear-
ization techniques used in biochemistry and genetics. We con-
sider a simple reaction network involving replication, transfor-
mation, and disappearance steps and study the influence of
experimental (measurement) and linearization errors on the
evaluated values of rate coefficients. We show that the method
involving the linearization of the kinetic equations leads to
unpredictable results; because of the interference between
measurement and linearization errors, either error compensa-
tion or error amplification occurs. Although our approach does
not eliminate the effects of measurement errors, it leads to more
consistent results. For a broad range of input fractions no error
amplification or compensation occurs, and the error range for
the rate coefficients is about the same as the error range of the
measurements.

The study of large chemical and genetic networks presents
several problems. The measured quantities are concentra-

tions of various chemical species in chemical and biological
networks, proteins expressed by genes, and mRNA in genomic
and proteomic networks (1). The measurements are made
frequently, but not always, from a few to many times. The
precision of these measurements varies from at best one, or a few
percent, to merely qualitative estimates of 30–50%.

The challenge of the analysis of such measurements, in
particular, the deduction of the structure of the network, has
been attempted in several ways. We mention a few representa-
tive methods: correlation metric construction (2); experiments
of pulses of arbitrary magnitude (3); the method of singular-
value decomposition, which has been used in two separate ways
for the analysis of genetic networks (4, 5); the use of first-order
derivatives (Jacobians) (6, 7) and finally, the application of
Boolean networks, which have been used as a model for the
so-called reverse engineering problem (ref. 8 and references
therein).

Response experiments of the type mentioned play important
roles not only in chemistry and molecular biology but also in
other areas of science and technology, studying materials sub-

jected to variable external electric or magnetic fields (9), the
impact of spreading pollutants on the environment (10), and the
influence of the occurrence of certain mutations in the past on
the current geographic distributions of gene frequencies (11).
The response technique consists of inducing controlled pertur-
bations of certain input parameters and of recording the time
variation of some output variables that describe the state of the
system. The objective of the research is to extract information
about the mechanism of the processes occurring within the
system. A typical example is the use of tracer experiments for
identifying reaction mechanisms in chemical kinetics or molec-
ular biology (ref. 12 and references therein). A similar approach
involves perturbations that are naturally occurring, for example,
the study of the influence of the appearance of a mutation in the
past on the current geographic distribution of gene frequencies
in humans (11, 13).

The use of small perturbations leads to important simplifica-
tions. If the functional dependence between the excitations and
responses is analytic, then for small perturbations it can be
approximated by a linear functional dependence, which ex-
presses the contribution of different values of the excitation
variables xu(t�), at different times �� � t� � t, on the current
values yu(t) of the response variables at the current time t:

yu�t� � �u� �
��

t

�uu��t;t��xu��t��dt�, [1]

where �uu�(t;t�) are two-time susceptibility functions that bear
the mechanistic information. The important fact is that the linear
response law (Eq. 1) is independent of the detailed form of the
evolution equations; for small perturbations many different
evolution equations may lead to the same linear response law
(Eq. 1). In some cases, the linear response law (Eq. 1) can be
further simplified, for example, if the susceptibility functions can
be represented by the linear combination of a finite number of
exponentials, then the dynamics of the system can be represented
by a system of linear differential equations. Linear differen-
tial equations have been used in approximate studies of gene
expression (5).

It is desirable to identify observations or design experiments
for which the validity range of a linear response law is known.
We have recently introduced two related approaches that lead
to linear response laws for systems with nonlinear dynamics.
The first approach is based on the use of labeled compounds
for identifying reaction mechanisms in chemical kinetics and
involves discrete state variables in continuous time (ref. 12 and
references therein). The second approach concerns studies of
geographic distributions of gene frequencies in humans and
uses a continuous time and space description (13, 14). In both
cases we have shown that linear response laws for nonlinear
systems may emerge which are not due to linearization but
rather to the fact that the kinetic and transport parameters
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are close to each other, practically the same, for many labeled
and unlabeled species, such a condition is referred to as the
‘‘neutrality condition.’’ In chemistry the neutrality condition is
due to the kinetic isotope effect, which leads to generally small
variations of the values of the rate coefficients; in population
genetics it is because many mutations are neutral, that is, the
demographic and transport parameters are practically the
same for mutants and nonmutants. For neutral systems these
linear response laws are exact even if the intrinsic dynamics
is highly nonlinear. Another attractive feature is that both
theories lead to simple physical interpretations for the sus-
ceptibility functions from the response laws; they are related
to the probability density of the time necessary for crossing the
system, which should simplify the analysis of experimental
data.

The purpose of this article is to develop a unified linear
response approach for nonlinear dynamics obeying neutrality
conditions, valid both for continuous and discrete variables,
time-dependent, and possibly space-dependent. We discuss the
possible implications of this generalized approach for extracting
mechanistic information from experimental data, with emphasis
first on studies of gene expressions and comparison with linear
approximations presented in the literature. Then we apply this
theory to a nonlinear kinetic example for which a detailed
analytical study is possible. We compare that exact solution with
the first-order response theory based on appropriate tracer
measurements and also compare it with the response of the
linearized kinetic example. An important interest here is in
the effects of error propagation in the analysis because of the
application of measurements with poor precision. We conclude
with some comments on the use of the theory presented here in
improving several earlier approaches.

Outline of the Response Approach
We consider a complex system made up of different types of
individuals (species), which can be atoms, molecules, quasi-
particles, biological organisms, etc. The different types of indi-
viduals interact with each other and at the same time are
involved in motion, which can be described by transport oper-
ators local in time. We denote by �u(r;t),u � 1, 2, . . . the
concentrations of the different species at position r and time
t, expressed in numbers of individuals per unit volume, and
we assume that the rate of change of the species u, Ru(t), can
be expressed as a local, nonlinear function of the composi-
tion vector �(r;t) � [�u(r;t)]u � 1,2, . . . and of time t: Ru(t) �
Ru(�(r;t)) � Ru

�(�(r;t)) � Ru
�(�(r;t)),u � 1,2, . . . , where

Ru
�(�(r;t)) � 0 and Ru

�(�(r;t)) � 0 are formation and consump-
tion rates, respectively. The transport of the different species can
be described by transport operators �u . . . , which are local in
time and generally nonlocal in space. In this article we limit
ourselves to transport operators of the ‘‘master’’ type:

�u . . . � �
r�

	. . . Wu���r�;t�,r� 3 r�dr�

� . . . Wu���r;t�,r 3 r��dr�
, [2]

where Wu(�(r�;t),r� 3 r) are concentration-dependent transi-
tion rates. The operators describe the regular (Fick) and anti-
crowding diffusion processes as particular cases. The evolution
equations of the process are:

��u�r,t���t � Ju
��r,t� � Ju

�	��r,t�
 � Ru	��r,t�
 � �u�u�r,t�, [3]

where Ju
�(r,t) is the input flux of species �, which is generally

space- and time-dependent and can be controlled by the exper-

imenter, and Ju
�[�(r,t)] is the output flux of species u, which is

assumed to depend on the composition vector. Each species u �
1,2, . . . may exist in two different forms, ‘‘marked’’ and ‘‘not
marked,’’ and both forms fulfill a ‘‘neutrality condition’’ (13);
that is, their kinetic and transport properties are identical. In
chemical kinetics a ‘‘marked species’’ can be a molecule con-
taining a radioactive isotope and we neglect the kinetic isotope
effect. In fluid mechanics a marked species can be a colored fluid
for which the hydrodynamic properties (density, viscosity, and
diffusion coefficients) are the same as the ones of the main fluid.
In population genetics a marked species can be an individual
carrying a neutral mutation, for which the main functions
describing the vital statistics (natality and mortality functions
and diffusion coefficients) are the same as for a nonmutant
individual. In the following text we denote by �u(r,t) and ��u(r,t),
u � 1,2, . . . , the concentrations of the not marked and marked
species, respectively, and by �u

¥(r,t) � �u(r,t) � ��u(r,t), u �
1,2, . . . , the total concentrations of the species. At the beginning
of the experiment the system contains only not marked species.
The system need not be (but may be) in a stationary state. The
experiment consists in varying the ratios,

	u�r,t� � Ju
���r,t��Ju

���r,t�, [4]

between the input fluxes of Ju
��(r,t), the marked compounds and

the total input fluxes, Ju
�¥(r,t), with the preservation of the total

input fluxes, Ju
�¥(r,t). We record the response to these varia-

tions, the fractions,


u�r,t� � Ju
��	��r,t�,���r,t�
�Ju

��	��r,t�,���r,t�
, [5]

of the marked outflow fluxes, Ju
��[�(r,t),��(r,t)], to the total

output fluxes Ju
�¥[�(r,t),��(r,t)]. We intend to obtain a relation

between the excitation of the system, expressed by the fraction
	u(r,t), and the response of the system, expressed by the fraction

u(r,t).

We assume the existence of generalized neutrality conditions
(13), in the form of scaling laws, which connect the kinetic and
transport laws for the whole system to the corresponding laws for
the marked and not marked species, respectively.

Ru
������r;t�,��r;t�� �

��u�r;t�
��u�r;t� � �u�r;t�

Ru
�����r;t�

� ��r;t�), u � 1, 2, . . . . [6]

Eq. 6 expresses the fact that the marked and not marked species
contribute equally to the transport process. We assume that the
output fluxes, Ju

�¥[�(r,t)], are expressed by kinetic laws, and thus
they also obey a scaling condition similar to Eq. 6:

Ju
������r;t�,��r;t�� �

�u
��r;t�

��u�r;t� � �u�r;t�
Ju
������r;t� � ��r;t��. [7]

We also introduce similar scaling conditions for the transport
rates Wu(�(r�;t), r� 3 r)dr, u � 1,2, . . . .

W�u����r;t�,��r�;t�,r� 3 r�dr

�
��u�r�;t�

��u�r�;t� � �u�r�;t�
W�u����r�;t�

� ��r�;t�,r� 3 r)dr, u � 1, 2, . . . . [8]

The response experiment suggested before (ref. 12 and refer-
ences therein and ref. 13) can be described in terms of two sets
of nonlinear evolution equations of the type (Eq. 3), one set
for the labeled concentration vector ��(r;t), and the second
set for the total concentration vector �(r;t) � ��(r;t), respec-
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tively. The transport and reaction rates in these two sets of
evolution equations are connected to each other by means of
the neutrality conditions (Eqs. 6–8). Together with suitable
initial and boundary conditions, these two sets of evolution
equations determine the time and space dependence of the
total concentrations of the different species and of the marked
species. Despite their nonlinearity, these two sets of evolu-
tion equations lead to a linear response law, which relates the
excitation functions, 	u(r;t), to the response functions, 
u(r;t).
By using the neutrality conditions (Eqs. 6–8) and the defini-
tions (Eqs. 4 and 5) for the excitation and response functions,
after lengthy algebraic manipulations, the two sets of nonlin-
ear evolution equations lead to a set of linear integro-
differential equations, which relate the responses 
u(r;t) to the
excitations 	u(r;t). By representing the solution of this set of
linear equations in terms of Green functions, we come to a
generalization of Eq. 1:


u�r,t� � �
u�

�
��

t �
r�

�uu��r�,t� 3 r,t�	u��r�,t��dr�dt�, [9]

where the space- and time-dependent susceptibility function
�uu�(r�,t� 3 r,t) is nonnegative and obeys the normalization
condition:

�
u�

�
��

t �
r�

�uu��r�,t� 3 r,t�dr�dt� � 1. [10]

It is possible to show that the susceptibility function has a
simple physical interpretation. It is related to the probability
density,

�u��,r�r,u;t�ddr, with �
u�

�
0

� �
r�

�u��,r�r,u;t�ddr � 1,

[11]

that a species u, which leaves the system at time t and position
r, entered the system as the species u� spent a residence time in
the system between  and  � d, with  � t � t�, and has a
displacement vector between r and r � dr, with r � r �
r�. We have

�u��,r�r,u;t� � �uu��r � r,t �  3 r,t�. [12]

According to Eq. 12 the physical significance of the linear
response law (Eq. 9) is straightforward, it expresses the contri-
bution to the output fraction of marked species entering the
system in different forms u�, at different initial positions r�, and
at different initial times, t� � t � . The weight function
(susceptibility function) attached to various initial positions and
times is the conditional probability density of these three random
variables. The theoretical results presented here include as
particular cases our previous approaches to linear response for
nonlinear systems with neutrality conditions (ref. 12 and refer-
ences therein and ref. 13). To save space the derivation of Eqs.
9–12 is not given here. Similar derivations, corresponding to
some particular cases, are given in refs. 12 and 13.

This article focuses on some possible applications of our
approach for studying complicated chemical and biochemical
systems. Our method makes it possible to use simple linear rules
for exploring complicated nonlinear systems. A simple applica-
tion is the study of connectivity among various chemical species
in complicated reaction networks. In the simple case of homo-
geneous systems with time-invariant structure, the susceptibility

matrix � � [�uu�] � �() depends only on the transit time and
not on time itself. Our theory shows that the matrix elements,
�uu�(), are proportional to the elements, Guu�(), of a Green
function matrix, G() � [Guu�()], which is the exponential of a
connectivity matrix K, that is G() � exp[K]. It follows that,
from a response experiment involving a system with time-
invariant structure, it is possible to evaluate the connectivity
matrix, K, which contains information about the relations among
the different chemical species involved in the reaction mecha-
nism. Concerning the space variable r from our approach, it can
be used in different ways. If r is a position variable in real space,
then our approach can be used for analyzing response experi-
ments in reaction-diffusion systems. Another possible applica-
tion is to use our approach as a continuous formalism for the
description of a complex discrete system; in this case, r is not a
real space position variable but a state vector describing the state
of the system.

Error Analysis for a Test Model
To illustrate our approach, we consider a simple test model,
which has the advantage that it can be studied analytically even
for very large numbers of intermediates, making it suitable for
the analysis of the interference between experimental errors and
the errors due to linearization. This type of model, which is
somewhat similar to Eigen’s hypercycle model (15), was recently
introduced by us in connection with a population genetic prob-
lem (M.O.V., L.L. Cavilli-Sforza, and J.R., unpublished data).
The model used here is essentially a space-independent, homo-
geneous version of the model in M.O.V., L.L. Cavilli-Sforza, and
J.R. (unpublished data). We assume that two types of chemical
species are in the system: stable chemicals, A�, � � 1,2, . . . , and
active intermediates, Xu, u � 1,2, . . . , and a very large supply
of stable species A�, � � 1,2, . . . and their concentrations a�, � �
1,2, . . . are assumed to be constant and only the concentrations
xu, u � 1,2, . . . of the active intermediates are variable. We
consider that the active intermediates replicate, transform into
each other, and disappear through autocatalytic processes;
moreover, we assume that all active intermediates have the same
catalytic activity. Under these circumstances we can represent
the chemical processes occurring in the system by the following
reaction mechanism.

1. Replication processes

� � Xu� � Aw^ � �Xu� � Xw , [13]

2. Transformation processes

� � Xu� � Xv^ � �Xu� � Xw , [14]

3. Disappearance processes

� � Xu� � Xv^ � �Xu� � products. [15]

In Eqs. 13–15 (@Xu) denotes the pool of active intermediates.
The kinetic evolution equations attached to the reactions (Eqs.
13–15) are

dx�dt � x¥Ax, [16]

where x is the composition vector of the system, A is a kinetic
matrix that can be expressed in terms of the rate coefficients
of the process, and x¥ � ¥uxu is the total concentration of active
intermediates. Although the number of variables for this
type of system can be very large, the integration of kinetic
equations (Eq. 16) can be reduced to two numerical quadra-
tures. This outcome is made possible by a nonlinear transfor-
mation of state variables involving an intrinsic timescale, �(t) �
¥u�0

t xu(t�)dt�; with this intrinsic timescale the kinetic equations
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(Eq. 16) can be expressed in terms of a linear matrix differ-
ential equation:

dx�d� � Ax. [17]

If the kinetic matrix is constant, Eq. 17 can be solved either
analytically by using the Sylvester theorem or the Laplace trans-
formation or numerically. Finally, the relation between the intrinsic
timescale � and the laboratory timescale t can be determined from
t � �0

�[¥uxu(��)]�1d��. A constant kinetic matrix is sufficient for
representing response experiments for which the excitations can be
represented by step functions. For more complicated excitations the
kinetic matrix is time-dependent. In this case, the method of
intrinsic time can be extended by representing the general solution
of Eq. 17 in terms of a Green matrix function G, which can be
evaluated by repeated numerical integration of an equation of
the type dG�dt � AG with initial conditions displaced at different
initial times.

For illustration we start by analyzing a very simple type of
response experiment involving the evaluation of self-replication
constants. We consider the perturbation of the self-replication of
a species by an input flux, whereas the response to this pertur-
bation is given by the variation of the disappearance rate of the
species due to the input perturbation. We study two types of
excitation: (i) an increase of the input flux according to a step
function and (ii) an excitation of the neutral type, where the total
input flux is kept constant, but the fraction of a labeled
compound in the input flux is varied, also as a step function. We
assume that the measured values of the variation of the output
flux (disappearance rate) are subject to experimental errors. To
emulate the two types of response experiments, we solve the
evolution equations (Eq. 16) exactly for the two types of response
and add exactly the same errors to the two results. We take these
solutions as our ‘‘experimental’’ values. Further on, we take the
responses with errors and evaluate the self-replication rate from
them. For the first type of emulated response experiment, type
i, we evaluate the rate coefficient from the linearized evolution
equation. For the neutral response experiment, type ii, we
evaluate the self-replication constant by deconvoluting the sus-
ceptibility function from our exact response law (Eq. 9). In both
cases, we study the variation of the relative (percent) output
error of the evaluated self-replication rate in terms of the relative
(percent) values of the measurement errors and of the relative,
percent variations of the input flux. For the experiments of type
i the variation of the input flux is expressed as the ratio between
the flux increase due to excitation and the total value of the flux
after the excitation has occurred. For the experiments of type ii
the total f lux is kept constant and the variation is the fraction of
labeled compound in the input flux after the excitation has
occurred.

Figs. 1 and 2 show the error of the evaluated self-replication
rate constant as a function of the experimental error and of the
variation of the input flux for emulated experiments of types i
and ii, respectively. In the emulated experiments of type i for
which the evaluation of the rate constant is based on linearized
kinetic equations, the error of the evaluated rate constant
depends strongly on the variation of the input perturbation. The
range of the final output error (�40%, �10%) is distorted in
comparison with the range of the experimental error (�20%,
�20%). For small values of the input perturbation, between 20%
and 40% the output error is surprisingly small, between 10% and
0%. As the input perturbation increases, the accuracy of the
method deteriorates rapidly, and for large perturbations the
output error is almost twice as big as the experimental error. For
the emulated experiments of type ii, where the rate coefficient
is evaluated from our exact response law (Eq. 9) without
linearization, the situation is different. For input perturbations
between 20% and 70% the error of the evaluated rate coefficient

has about the same range of variation as the experimental error
(�20%, �20%) and does not depend much on the size of the
perturbation. For very large input perturbations, between 70%
and 80%, the output error increases abruptly. In Fig. 3 we show
the difference of errors of the evaluated self-replication rate
constant (output error) evaluated from emulated experiments of
type i, with linearization, and type ii, without linearization,
respectively. We notice that the two approaches lead to different

Fig. 1. The error of the evaluated self-replication rate constant (output error)
versus the experimental error and the input perturbation for an emulated
response experiment of type i. The rate constant is evaluated by using a
linearized evolution equation. The range of the output error (�40%, �10%)
is strongly distorted in comparison with the range of the experimental error
(�20%, �20%). The output error varies a lot with the perturbation size; for
large perturbations it is about twice the experimental error, whereas in other
regions error compensation occurs.

Fig. 2. The error of the evaluated self-replication rate constant (output error)
versus the experimental error and the input perturbation for an emulated
response experiment of type ii. The rate constant is evaluated from the
susceptibility function computed from the exact response law (Eq. 9). The
range of the output error is about the same as the range of the input error for
input perturbations between 20% and 70% and does not depend much on the
size of the perturbation. For input perturbations between 70% and 80%, the
output error is bigger.
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results; the evaluated values of the rate coefficient are different
even for small experimental errors and input perturbations. The
biggest differences occur for large perturbations, because for
large perturbations the linear approach is very inaccurate.

The physical interpretation of the results presented in Figs.
1–3 follows. Like any autocatalytic processes, chemical reactions
Eqs. 13–15 lead to saturation effects due to the balance between
self-replication and consumption (disappearance) processes.
The saturation effects are nonlinear and, as a result, the exper-
imental errors propagate nonlinearly, which explains the error
distortion displayed in Fig. 1. Even though the analysis of the
process is based on linear equations, the intrinsic dynamics of the
process is nonlinear and the errors are distorted. This error
distortion interferes with the numerical errors because of lin-
earization, resulting in Fig. 1. In some regions, these two errors
can have opposite signs, resulting in error compensations,
whereas in other regions the two errors add up, leading to large
output errors. For neutral response experiments, type ii linear-
ization is not necessary for the evaluation of the rate coefficients
and the most important source of errors is the experimental
errors. This is the reason why the output error follows closely the
input error and almost no error compensation or error ampli-
fication occurs. Numerical errors, however, do have some influ-
ence in neutral experiments, especially for very-large-input
perturbations. If the input flux contains a very large fraction of
marked (labeled) compound the dynamics of the marker is close
to saturation, and, in this area, small variations of the input flux
lead to relatively large variations in the output, which produces
numerical errors in the deconvolution of Eq. 9. This effect
explains the spike in Fig. 2 for large perturbations. It follows that,
even for response experiments of type ii, it is not recommended
to use very-large-input perturbations. Nevertheless, it seems that
the admissible input perturbations that produce reasonable

results are much larger than the admissible perturbations for
experiments of type i for which the analysis is based on linearized
evolution equations.

We have also emulated experiments that involve the measure-
ment of more than one flux, to determine the cumulative effect
of errors produced by more than one measurement. We have
considered the evaluation of two transformation constants.
Unfortunately, in this case, the results cannot be easily repre-
sented as compact, 3D graphs. The analysis revealed a compli-
cation typical for multiple flux measurements: experimental
errors may lead to an apparent violation of the law of mass
conservation. We considered only errors that preserve the mass
conservation. We noticed the same qualitative features as in the
self-replication constant. For experiments of type i, with linear-
ization, in general, a distortion of the range of the output error
exists compared with the range of the input error. We have also
noticed error compensation and error accumulation; in some
cases, they exist in more than one region and alternate, one
compensation region followed by an accumulation region. Some-
times the amplification error tends to be very large; we have
noticed output ranges of the error four to five times larger than
the maximum range of the measurement errors of the fluxes. The
emulated experiments of type ii are also affected by the cumu-
lative measurement errors in a complicated way. A region exists
where the range of the output error is about the same as the
maximum range of the input experimental errors; however, the
maximum admissible input fluxes are smaller than in a single-
response experiment; in our simulations it varied from �60–
65% (compared with 80% for single-response experiments) to
35–40%.

Although the detailed results of our computations are prob-
ably model-specific we believe that the qualitative features
discussed before have general significance. It is likely that the
analysis of a response experiment based on linearized equations
led to error compensation in some regions and to error ampli-
fication in other regions. The nonlinear saturation effects oc-
curring in our model are likely to exist even though the auto-
catalytic steps are missing. For example, enzymatic reactions
display saturation effects due to the limited supplies of the
enzymes. The error compensation is as harmful as error ampli-
fication because, in general, it is impossible to predict a priori
where it occurs. Concerning the neutral response experiments
for which the linearization results are not necessary, it is likely
that they lead to better results than the experiments of type i for
which the analysis is based on the linearization of the kinetic
equations. However, even for neutral experiments the use of
very-large-input perturbations requires caution, because of the
proximity to saturation, which results in numerical errors. Mul-
tiple measurements with large errors introduce further compli-
cations, which reduce the potential value of experiments of type
ii, without linearization, for large perturbations.

In conclusion, the linearization of the evolution equations for
the analysis of chemical and biochemical networks is unpredict-
ably limited. For the linearization to be valid it is necessary to use
small perturbations, for which the experimental errors are very
large. In the articles that have appeared on this subject insuffi-
cient (or no) attention has been given to error accumulation and
propagation (4–7). The response approaches developed here
avoid linearization and, hence, are to be preferred.
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