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Quantitative conceptual tools dealing with control and regulation of cellular processes have
been mostly developed for and applied to the pathways of intermediary metabolism. Yet,
cellular processes are organized in di!erent levels, metabolism forming the lowest level in
a cascade of processes. Well-known examples are the DNA}mRNA}enzyme}metabolism
cascade and the signal transduction cascades consisting of covalent modi"cation cycles. The
reaction network that constitutes each level can be viewed as a &&module'' in which reactions
are linked by mass transfer. Although in principle all of these cellular modules are ultimately
linked by mass transfer, in practice they can often be regarded as &&isolated'' from each other in
terms of mass transfer. Here modules can interact with each other only by means of regulatory
or catalytic e!ects*a chemical species in one module may a!ect the rate of a reaction in
another module by binding to an enzyme or transport system or by acting as a catalyst. This
paper seeks to answer two questions about the control and regulation of such multi-level
reaction networks: (i) How can the control properties of the system as a whole be expressed in
terms of the control properties of individual modules and the e!ects between modules?
(ii) How do the control properties of a module in its isolated state change when it is embedded
in the whole system through its connections with the other modules? In order to answer these
questions a quantitative theoretical framework is developed and applied to systems containing
two, three or four fully interacting modules; it is shown how it can be extended in principle to
n modules. This newly developed theory therefore makes it possible to quantitatively dissect
intermodular, internal and external regulation in multi-level systems.
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1. Introduction

The whole can be understood in terms of its parts
and their interactions. This, at least as regards the
control of cellular processes in steady state, is a
central message of control analysis, a theoretical
-Author to whom correspondence should be addressed.
E-mail: jhsh@maties.sun.ac.za

0022}5193/01/030261#25 $35.00/0
framework developed during the last three dec-
ades following the pioneering work of Kacser
and Burns [see Kacser et al. (1995) for an
updated version of their original paper] and
Heinrich & Rapoport (1974). In more precise
terms, control analysis allows the description
of the control properties of a system in terms of
the individual reaction properties of the steps in
the system.
( 2001 Academic Press
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Control analysis has mostly concentrated on
control at the level of intermediary metabolic
pathways. However, the metabolic level is but
one in a cascade of levels of cellular processes.
These levels, or &&modules'', are e!ectively isolated
from each other in terms of mass transfer, but
may communicate through a complex set of
regulatory and catalytic interactions. This is one
sense in which cellular processes are intrinsically
modular, the modules forming pieces of the cellu-
lar puzzle. When we need to distinguish this type
of modularity from other possible decomposi-
tions such as, for example, into functional units
(Westerho!& van Dam, 1987; Brown et al., 1990;
Rohwer et al., 1996), we call it multi-level. One
example of a multi-level construction within the
living cell is the cascade of DNA-replication,
transcription, translation and metabolism
(Westerho! et al., 1990). Another is the cascade of
covalent modi"cation cycles found in most signal
transduction systems (Goldbeter & Koshland,
1984; Kahn & Westerho!, 1991). In the study of
such multi-level systems traditional control anal-
ysis can be applied to each of the individual
levels. What is sought, however, is the integration
of the control of individual modules with the
intermodular regulatory interactions into a pic-
ture of the control of the whole system.

This paper builds on previous work (Kahn
& Westerho!, 1991; Westerho! & Kahn, 1993;
Van der Gugten & Westerho!, 1997) that ad-
dressed this problem, but, as discussed further on,
fell short of being general. The analysis of multi-
level systems is reformulated and generalized in
terms of the CE"I square matrix formulation
(Westerho! & Kell, 1987; Westerho! & van
Dam, 1987) where C is a control coe$cient
matrix, E a matrix containing structural and lo-
cal properties, and I the identity matrix; this
relationship is discussed further on. Using con-
cepts from the recently developed framework
of regulation analysis (Hofmeyr et al., 1993;
Cornish-Bowden & Hofmeyr, 1994; Hofmeyr
& Cornish-Bowden, 1996), we provide answers to
the following two questions: (i) How can the
control properties of the system as a whole be
expressed in terms of the control of individual
modules and the regulation of each module by
the other modules? (ii) How do the control prop-
erties of a module change when it is imbedded in
the whole system through its connections with
the other modules?

Our main result is a rational method for
understanding the cellular whole in terms of its
modules and their interactions; in turn, each
module can be understood in terms of its parts
and their interactions. We can, therefore, build
the cellular regulation puzzle.

2. Theory

A multi-level reaction network is de"ned as
consisting of distinct modules that ful"ll the
condition of no mass transfer between modules,
the intermodular links being formed by inter-
mediary species in one module acting as catalysts
or e!ectors of steps in another module. As will
become clear, such systems possess the special
property that one their descriptors, the K-matrix,
is block-diagonalizable, each block correspond-
ing to one module (Schuster & Schuster, 1992).
The term &&K-modular'' would be a technically
more descriptive alternative for &&multi-level'', but
is only informative if one knows what a K-matrix
is.

After discussing the symbolism to be used, we
show how the control properties of a single mod-
ule in isolation can be described; then we extend
the description to systems of linked modules,
showing how integral control of the system as
a whole can be decomposed into intramodular
control and intermodular response.

2.1. NOTE ON SYMBOLISM

We must clearly distinguish the properties of
a module in isolation (intramodular control prop-
erties) from the properties of a module when it is
embedded in the full system (integral control
properties). To di!erentiate between the intra-
modular and integral coe$cients, we shall adhere
to current usage in control analysis, only invent-
ing new symbols when necessary. In general,
C refers to intramodular control, E to local struc-
tural (K and L ) and step properties (e) within
a module, R to intramodular internal response
and O to intramodular co-control (the meaning
of these terms are de"ned where appro-
priate)*this constitutes established usage. G re-
fers to integral control properties, while M refers



FIG. 1. Fully interacting two-module systems. System (a)
contains one intermediate per module, while system (b)
contains two intermediates per module. (a.1) shows expli-
citly all the interconnections between the modules, while
in (a.2) and (b) the interconnections are shown as arrows
labelled with the appropriate M-matrix (see text).
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to intermodular response. A novel type of
coe$cient, the A-coe$cient (ampli"cation/
attenuation) is symbolized by A. Boldface
symbols refer to matrices of these coe$cients,
while italicized symbols refer to individual
coe$cients.

Many of the matrix equations use diagonal
matrices, i.e. matrices with non-zero diagonal
and zero o!-diagonal elements. True diagonal
matrices are symbolized by D(X) where X is
the type of coe$cient on the diagonal. Block-
diagonal matrices, also called quasi-diagonal
matrices by Gantmacher (1960), are also used.
Although a less restrictive de"nition is possible,
we de"ne a block-diagonal matrix as a par-
titioned matrix that contains non-singular
submatrices as its diagonal blocks and zero
submatrices as its o!-diagonal blocks; it is
symbolized by D(X) where X is the type of
submatrix on the diagonal.

2.2. INTRAMODULAR CONTROL PROPERTIES OF

A SINGLE MODULE

First, we consider a single module in isolation,
i.e. we regard all intermediate concentrations in
other modules that directly a!ect reaction rates
in the module under consideration as "xed para-
meters (we use &&intermediate'' as a general term
for molecular species in modules, i.e. metabolites,
enzymes, polynucleotides, etc.). If there are n re-
actions that convert m variable intermediates in
the module (of which r are independent), then
Hofmeyr & Cornish-Bowden (1996) have shown
how, from the theory of control analysis, the
following general matrix expression for the mod-
ule can be obtained:

C
CJI

CsID [K !esL]"C
I
n~r
0

0
I
r
D , (1)

where CJI"(n!r)]n matrix of independent
#ux-control coe$cients, de"ned as CJi

j
"L ln J

i
/

L ln v
j
, CsI"r]n matrix of independent concen-

tration-control coe$cients, de"ned as Csi
j
"

L ln s
i
/L ln v

j
, and es"n]m matrix of elasticity

coe$cients, de"ned as evj
si
"L ln v

j
/L ln s

i
. The K-

matrix is the scaled form of a matrix K (the
null-matrix or kernel of the stoichiometry matrix)
that expresses the dependency of the steady-state
#uxes on the independent #uxes (J"KJI), while
theL-matrix is the scaled form of a matrix L that
expresses the dependency of the di!erential equa-
tions that constitute the kinetic model on the
independent di!erential equations (ds/dt"
LdsI/dt) (Reder, 1988; Hofmeyr & Cornish-
Bowden, 1996).

If C"[CJI CsI]T and E"[K !esL],
eqn (1) reduces to a particularly elegant form:

CE"I. (2)

Both C and E are square invertible n]n matrices,
i.e. the equation can also be written as EC"I,
C"E~1, or E"C~1. Equation (2) is general; it
holds for any network of reactions. It was origin-
ally developed by Westerho! & Kell (1987) and
Westerho! & van Dam (1987); their internal
format was di!erent but equally general. Sub-
sequently, other internal formats for this equa-
tion were proposed (Cascante et al., 1989a, b;
Westerho! et al., 1994; Hofmeyr & Cornish-
Bowden, 1996).

For module 1 in the system in Fig. 1(a) the
explicit control matrix would be

C
CJ1

1a
Cs1

1a

CJ1
1b

Cs1
1b
D C

1 !ev1a
s1

1 !ev1b
s1
D"C

1
0

0
1D , (3)
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while that for module 2 is

C
CJ2

2a
Cs2

2a

CJ2
2b

Cs2
2b
D C

1 !ev2a
s2

1 !ev2b
s2
D"C

1
0

0
1D . (4)

2.3. INTEGRAL CONTROL PROPERTIES OF THE

COMPLETE MULTI-LEVEL SYSTEM

Being general, eqn (2) also applies to the whole
multi-level system of interlinked modules. In
order to distinguish between integral control co-
e$cients that apply to the system as a whole and
intramodular control coe$cients that apply to an
individual module in isolation (used in the pre-
vious section), we use the symbol G for integral
control coe$cients, while retaining the estab-
lished symbol C for intramodular control co-
e$cients. If G is the matrix of integral control
coe$cients with respect to the independent vari-
ables of the modules then eqn (2) is written as

GE"I. (5)

For the two-module system in Fig. 1(a) this
equation represents
The "rst two columns of E form the K-matrix; it
can be partitioned to yield diagonal blocks (in the
dotted frames) with zeros in the o!-diagonal
blocks. It is this property that makes the system
multi-level (K-modular). The number of rows in
each diagonal block corresponds to the number
of steps in the corresponding module (here two).

It is always possible to re-arrange the rows of
G and the columns of E in such a way that the
control or elasticity coe$cients of a module oc-
cur together in a block of the matrix. This allows
the matrices to be partitioned as follows:
Where iOj, Ei
j

is an intermodular elasticity
matrix of the form [0 !e] where the elasticity
coe$cients are those of the rates of module i with
respect to the intermediates in module j.

2.4. INTEGRAL CONTROL IN TERMS

OF INTRAMODULAR CONTROL AND

INTERMODULAR RESPONSE

Now that we have described the integral
control-matrix equation for the full multi-level
system we consider the following question: Is it
which can be abbreviated to

C
G1

1
G2

1

G1
2

G2
2
D C

E1
1

E2
1

E1
2

E2
2
D"C

I
0

0
ID . (8)

Here Gi
j

is an integral control matrix for the
independent variables in module i with respect to
the steps in module j, and Ei

j
is a matrix that

includes elasticity coe$cients for the reaction
rates in module i with respect to the independent
intermediates in module j. The diagonal matrices
Gi

i
and Ei

i
are square. The o!-diagonal matrices

Gi
j

and Ei
j

(where iOj) can be rectangular; if
rectangular, their dimensions will ful"ll the re-
quirements for multiplication of the matrices.

An important di!erence exists between the
contents of the diagonal Ei

i
and the o!-diagonal

Ei
j
where iOj. Ei

i
is a matrix that describes the

structural properties (K
i
and L

i
) and local kin-

etic step properties (e) of module i; it has the form
given in the previous section: [K

i
!eL

i
], where

the elasticity coe$cients in e are those of module
i's rates with the respect to its own intermediates.



FIG. 2. A schematic representation of the partial response
coe$cients 1aRs1

s2
and 1bRs1

s2
that sum to form the intermodu-

lar response coe$cient Rs1
s2

. Whether they enhance or
counteract each other depends on the signs of the elasticity
and control coe$cients. If, for example, both elasticity co-
e$cients are positive and the control coe$cients Cs1

1a
and

Cs1
1b

are, respectively, positive and negative then the two
partial response coe$cients will have opposite signs and
counteract each other.
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possible to express the integral control of a module
on itself or on another module in terms of only
intramodular control and intermodular response?
If this can be done, it means that the integral
control of a module can be deduced from
experimental analysis of the intramodular con-
trol within isolated modules and of the responses
of isolated modules to intermediates in other
modules (which would serve as "xed parameters
in such analyses).

The required transformation of eqn (5) is
accomplished by "rst writing it in the form
EG"I, which is permissible as both matrices
as de"ned above are invertible, and then pre-
multiplying both sides with the block-diagonal
matrix D(C), which contains matrices of intra-
modular control coe$cients on its diagonal. This
gives

D(C) )E )G"D(C). (9)

For the two-module system in Fig. 1 the equa-
tion would be

C
C

1
0

0
C

2
D C

E1
1

E2
1

E1
2

E2
2
D C

G1
1

G2
1

G1
2

G2
2
D"C

C
1

0
0
C

2
D .

(10)

The matrix multiplication D(C) )E gives

C
C

1
E1

1
C

2
E2

1

C
1
E1
2

C
2
E2
2
D C

G1
1

G2
1

G1
2

G2
2
D"C

C
1

0
0
C

2
D . (11)

The matrix product D(C) )E will always con-
tain the submatrices C

i
Ei
i
on its diagonal; accord-

ing to eqn (2) these matrix products are equal to
identity matrices, giving a diagonal of identity
matrices, which can be thought of as describing
the responses of the modules to themselves. The
o!-diagonal submatrices will be of the form C

i
Ei
j
;

according to the partitioned response property of
control analysis (Kacser et al., 1995) such ma-
trices contain response coe$cients of indepen-
dent variables in module i with respect to the
independent intermediates in module j. In turn,
each response coe$cient is a sum of partial re-
sponse coe$cients (Kholodenko, 1988), one for
each step through which the e!ect is mediated. As
an example, consider the matrix product C

1
E1
2

for the system in Fig. 1(a):

C
CJ1

1a
Cs1

1a

CJ1
1b

Cs1
1b
D C

0
0

!ev1a
s2

!ev1b
s2
D

"C
0

0

!(CJ1
1a

ev1a
s2
#CJ1

1b
ev1b
s2

)

!(Cs1
1a

ev1a
s2
#Cs1

1b
ev1b
s2

)D (12)

"C
0

0

!(1aRJ1
s2
#1bRJ1

s2
)

!(1aRs1
s2
#1bRs1

s2
)D (13)

"C
0

0

!RJ1
s2

!Rs1
s2
D . (14)

The meaning of partial response coe$cients is
made clear in Fig. 2, where 1aRs1

s2
and 1bRs1

s2
are

shown as examples. Each partial response coe$-
cient can be seen to a combination of a local
regulatory e!ect of S

2
on a step in the other

module 1 and a systemic e!ect of that step on its
own module.

The matrix C
i
Ei
j
, which we shall depict as Mi

j
,

therefore contains the information on how the
independent variables in module i respond to
perturbations in the intermediate concentrations
in module j. The product D(C) )E can be there-
fore be designated the intermodular response
matrix M:

M"C
I

M2
1

M1
2

I D . (15)
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As explained above, M also contains in the
identity matrices the response of the modules to
themselves.

It is important to realize that the intermodular
response matrix Mi

j
is de"ned in terms of the

in#uence that module j would have on module
i in the absence of all other intermodular
e!ects, including the reciprocal e!ect of module
i on module j. It is as if module i is considered in
isolation but being subject to the same regulation
by module j as in the whole system. In opera-
tional terms one can think of freezing the whole
system in steady state, then unfreezing only mod-
ule i and measuring its responses to changes in
the intermediates of module j, which are now
"xed and therefore parameters of module i.

Using the de"nition of M"D (C) )E, the
transformed control eqn (9) now becomes

MG"D(C), (16)

which, as M is invertible, can be re-arranged to

G"M~1 )D(C). (17)

As each intramodular control matrix C
i

on
the diagonal of D(C) can be written as (Ei

i
)~1

[see eqn (2)], it follows that

G"M~1 )D(E)~1"[D(E) )M]~1 (18)
or

G )D(E)"M~1. (19)

For the two-module system, eqns (17) and (19)
would read

C
G1

1
G2

1

G1
2

G2
2
D"C

I
M2

1

M1
2

I D
~1

C
C

1
0

0
C

2
D (20)

and

C
G1

1
G2

1

G1
2

G2
2
D C

E1
1

0
0
E2

2
D"C

I
M2

1

M1
2

I D
~1

. (21)

If the o!-diagonal matrices in M are zero (the
modules do not a!ect each other), the o!-
diagonal matrices in G must also be zero, so that
the equation describes the intramodular control
of the individual modules; in this case integral
control coe$cients are equal to intramodular
control coe$cients.

In general, for the integral control coe$cients
of a single module (a block in G), one can there-
fore write either

Gj
i
"(M~1)

ji
C

i
(22)

or
Gj

i
Ei

i
"(M~1)

ji
, (23)

where (M~1)
ji

is the submatrix in row j and
column i of M~1. When iOj eqn (22) describes
the integral control of the steps in module i on the
steady-state variables in module j; when i"j
it describes the integral control of module i on
its own steady-state variables, i.e. in the intact
system.

In summary, we have expressed the integral
control of a module on itself or on another
module in terms of (i) the internal control of that
module, and (ii) the response of each module to
all other modules. The exact nature of this rela-
tionship will be explored in the next sections, but
at this stage it is clear that the &&whole'' is the
matrix (&&interwoven'') product of the parts and
their interactions. Inversely, as shown in eqn (16),
it is also possible to express internal control in
terms of the integral control and the intermodu-
lar response. The expressions we obtained are
analogous to the ones obtained in terms of non-
normalized control and elasticity coe$cients
(Kahn & Westerho!, 1991) and to the ones de-
rived by Van der Gugten & Westerho! (1997).
Our introduction of the intermodular response
matrix M allows us to illustrate most clearly the
contribution made by the interaction between
levels of cellular processes and how it relates to
partial response coe$cients.

Intramodular control C
i
can be determined by

studying each module in isolation, in vitro. The
more elusive factor in integral control is M~1, the
inverse of the intermodular response matrix. We
now consider M~1 and its implications for inte-
gral control for two, three or more fully interac-
ting modules. (By &&fully interacting'' we mean
that any intermediate in any module a!ects all
the rates of all other modules directly, i.e. all the
rates potentially have non-zero elasticities for
the intermediate; this is the completely general
situation*in reality connections are usually
much sparser.)
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2.5. TWO FULLY INTERACTING MODULES

We consider the system in Fig. 1. By using the
standard rules for manipulation of partitioned
matrices (Gantmacher, 1960), the following ex-
pression for the inverse of M can be calculated by
the traditional method of augmenting the matrix
on the right with an identity matrix and then
applying Gaussian elimination until the left-hand
part is transformed into an identity matrix and
the right-hand part contains the inverse:

M~1"C
I

M2
1

M1
2

I D
~1

"C
(I!M1

2
M2

1
)~1

!M2
1
(I!M1

2
M2

1
)~1

!M1
2
(I!M2

1
M1

2
)~1

(I!M2
1
M1

2
)~1 D .

(24)

Using eqn (20), the integral control coe$cients
of module i with respect to its own steady-state
variables can therefore be expressed as

Gi
i
"(I!Mi

j
Mj

i
)~1C

i
, (25)

while the control of the variables of module j by
module i is

Gj
i
"!Mj

i
(I!Mi

j
Mj

i
)~1C

i
. (26)

Using the relationship C
i
"(Ei

i
)~1 the two ex-

pressions can also be recast as

Gi
i
Ei
i
"(I!Mi

j
Mj

i
)~1, (27)

Gj
i
Ei
i
"!Mj

i
(I!Mi

j
Mj

i
)~1. (28)

First, we consider the two-module system in
Fig. 1(a) with only one intermediate in each mod-
ule. To solve for the integral control coe$cients
in, say, G1

1
we "rst obtain the solution for

(I!M1
2
M2

1
)~1

AC
1
0

0
1D!C

0

0

!RJ1
s2

!Rs1D C
0

0

!RJ2
s1

!Rs2DB
~1
s2 s1
"C
1

0

!RJ1
s2

Rs2
s1

1!Rs1
s2
Rs2

s1
D
~1

. (29)

This inverse can be calculated as

1
RJ1

s2
Rs2

s1
1!Rs1

s2
Rs2

s1

0
1

1!Rs1
s2
Rs2

s1

. (30)

As before, each of the response coe$cients in the
products RJ1

s2
Rs2

s1
and Rs1

s2
Rs2

s1
consists of a sum of

partial response coe$cients. When the expres-
sions for the response coe$cients are multiplied
out they give sums of products of partial response
coe$cients. For example,

RJ1
s2

Rs2
s1
"(1aRJ1

s2
#1bRJ1

s2
) (2aRs2

s1
#2bRs2

s1
) (31)

"1aRJ1
s2

2aRs2
s1
#1aRJ1

s2
2bRs2

s1
#1bRJ1

s2
2aRs2

s1

#1bRJ1
s2

2bRs2
s1

. (32)

Each of these products describes a path of inter-
actions from S

1
in module 1 via S

2
in module

2 back to J
1

in module 1. Together they describe
the total intermodular e!ect of S

1
in module 1 on

the #ux J
1

through its own module, i.e. all the
e!ect that involves module 2. It turns out that, in
terms of control analysis, the total intermodular
e!ect equals the arithmetic sum of the e!ects
through the individual interaction paths. For
RJ1

s2
Rs2

s1
and Rs1

s2
Rs2

s1
these interaction paths are

schematically depicted in Figs 3 and 4, respec-
tively. Depending on the values of the control
and elasticity coe$cients some e!ects will be
positive and some negative.

Now, using eqn (25), the solution for G1
1

is
obtained as
C
GJ1

1a
Gs1

1a

GJ1
1b

Gs1
1b
D"

1
RJ1

s2
Rs2

s1
1!Rs1

s2
Rs2

s1

0
1

1!Rs1
s2
Rs2

s1

C
CJ1

1a
Cs1

1a

CJ1
1b

Cs1
1b
D (33)

"

CJ1
1a
#A

RJ1
s2

Rs2
s1

1!Rs1
s2
Rs2

s1
BCs1

1a
CJ1

1b
#A

RJ1
s2

Rs2
s1

1!Rs1
s2
Rs2

s1
BCs1

1b

A
1

1!Rs1
s2
Rs2

s1
BCs1

1a A
1

1!Rs1
s2
Rs2

s1
BCs1

1b

. (34)



FIG. 3. A schematic representation of the four products of
partial response coe$cients that sum to form the product of
intermodular response coe$cients RJ1

s2
Rs2

s1
. Each product

describes a path of interactions from S
1

to J
1
. In order

to understand how these paths enhance or counteract
each other typical signs are shown for the elasticity and
control coe$cients, and for the products of partial response
coe$cients.

FIG. 4. A schematic representation of the four products of
partial response coe$cients that sum to form the product of
intermodular response coe$cients Rs1

s2
Rs2

s1
. Each product de-

scribes a path of interactions from S
1

back to itself. In order
to understand how these paths enhance or counteract
each other typical signs are shown for the elasticity and
control coe$cients, and for the products of partial response
coe$cients.
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How should we interpret these equations in phys-
ical terms? Consider one of these expressions:

GJ1
1a
"CJ1

1a
#A

RJ1
s2

Rs2
s1

1!Rs1
s2
Rs2

s1
BCs1

1a
. (35)

This equation shows that the control exerted by
step 1a on its own steady-state #ux, i.e. GJ1

1a
,

depends on whether its module 1 occurs in isola-
tion or connected to module 2. If module 1 is
isolated, the response coe$cients RJ1

s2
and Rs1

s2
are

zero and GJ1
1a

equals the classical intramodular
control coe$cient CJ1

1a
. If module 1 is connected

to module 2, the "nal e!ect of a modulation of
step 1a on J

1
is shown to be a linear sum, a super-

position, of the individual contributions of the
intramodular e!ect and an intermodular e!ect
as follows: When the rate of step 1a is perturbed
it causes a change in the steady-state values of
both the #ux J

1
and the concentration s

1
; the
magnitude of these changes are quanti"ed by the
control coe$cients CJ1

1a
and Cs1

1a
. However, S

1
is

an e!ector of module 2 so that a change in its
concentration will a!ect the steady-state concen-
tration of S

2
to a degree given by Rs2

s1
. But, recip-

rocally, S
2

is an e!ector of module 1 and will in
turn cause an additional e!ect on J

1
of magni-

tude RJ1
s2

. This chain of e!ects from step 1a to J
1
is

quanti"ed by the product RJ1
s2

Rs2
s1
Cs1

1a
. The numer-

ator RJ1
s2

Rs2
s1

of the intermodular response term
(the bracketed expression) therefore has a clear
interpretation as the e!ect of S

1
on its own #ux

J
1

via S
2

in the other module.
There is, however, one more e!ect that has not

yet been accounted for: S
1

not only a!ects J
1

via
S
2
, it also a!ects itself via S

2
. The magnitude of

this e!ect is given by the response Rs1
s2
Rs2

s1
, which

can be regarded as quantifying a circular rever-
beration e+ect (note that it can also be written as
Rs2

s1
Rs1

s2
, i.e. the e!ect of S

2
on itself via S

1
). If this

response is greater than zero it should enhance
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RJ1
s2

Rs2
s1
, if less than zero it should attenuate it, and

if equal to zero it should not a!ect it. The denom-
inator (1!Rs1

s2
Rs2

s1
) incorporates these e!ects into

the expression: the denominator (1!Rs1
s2
Rs2

s1
)

becomes less than 1 when Rs1
s2
Rs2

s1
'0; it becomes

greater than 1 when Rs1
s2
Rs2

s1
(0, and it equals

1 when Rs1
s2
Rs2

s1
"0. Once again, this demonstrates

the power of control analysis to unravel the
multitude of interaction chains that reverberate
through the system following a perturbation.

In the extreme, when Rs1
s2
Rs2

s1
P1, the denomin-

ator (1!Rs1
s2
Rs2

s1
)P0, so that the whole inter-

modular response term becomes in"nitely large
and the system has no de"ned steady state. In this
sense circular reverberation terms such as Rs1

s2
Rs2

s1
make the system more (when less than 0) or less
(when greater than 0) structurally stable.

The expression for the concentration coe$-
cients, for example,

Gs1
1a
"

1

1!Rs1
s2
Rs2

s1

Cs1
1a

, (36)

yields the same type of physical interpretation:
a modulation in step 1a has an intramodular e!ect
on s

1
quanti"ed by Cs1

1a
; S

1
, however, also a!ects

its own concentration via S
2
, which, as before, is

accounted for by the circular reverberation term in
the denominator. From a regulatory point of view,
the circular reverberation term would enhance
homeostasis of s

1
(when less than 0) or decrease its

homeostasis (when greater than 0).
As an example of the integral e!ect of one mod-

ule on another, G2
1

can be solved from eqn (26) as

C
GJ2

1a
Gs2

1a

GJ2
1b

Gs2
1b
D"!C

0

0

!RJ2
s1

!Rs2
s1
D

]
1

RJ1
s2

Rs2
s1

1!Rs1
s2
Rs2

s1

0
1

1!Rs1
s2
Rs2

s1

C
CJ1

1a
Cs1

1a

CJ1
1b

Cs1
1b
D (37)

"

A
RJ2

s1
1!Rs1

s2
Rs2

s1
BCs1

1a A
RJ2

s1
1!Rs1

s2
Rs2

s1
BCs1

1b

A
Rs2

s1
1!Rs1

s2
Rs2

s1
BCs1

1a A
Rs2

s1
1!Rs1

s2
Rs2

s1
BCs1

1b

.

(38)
Here it is recognized that, in contrast to control
by a step of a #ux or concentration in its own
module, the control of a steady-state variable in
another module depends completely on the inter-
action between the modules (e.g. GJ2

1a
"0 when

RJ2
s1
"0). The control that occurs in the presence

of the intermodular response is understood read-
ily. For instance, the control of step 1a on #ux
J
2
is given by the control of 1a on s

1
multiplied by

the response of J
2

to s
1

and modi"ed by the
reverberation term in (1!Rs1

s2
Rs2

s1
).

Note that in all the expressions of eqns (34) and
(38) the intermodular response terms consist of
a response path to the variable in question multi-
plied by the function 1/(1!Rs1

s2
Rs2

s1
) that contains

only circular reverberation terms. This function
will be called the reverberation function. As will
become clear in the next examples, the numerator
of a reverberation function is not necessarily one,
but can also contain one or more reverberation
terms from the denominator.

Up to now the internal structure of each mod-
ule has consisted only of two reactions coupled
by one common intermediate. Because concen-
trations are the only possible mediators in the
communication between a module and other
modules, this kept the analysis relatively simple.
If there is more than one intermediate in a mod-
ule, the possible routes for communication in
a fully interacting system proliferate and the gen-
eral expressions for the integral control coe$-
cients become much more complex. Consider
the two-module system in Fig. 1(b) where each
module contains two intermediates. The matrix
(I!M1

2
M2

1
)~1 now becomes

1 !(RJ1
y1

Ry1
x1
#RJ1

y2
Ry2

x1
) !(RJ1

y1
Ry1

x2
#RJ1

y2
Ry2

x2
)

0 1!(Rx1
y1

Ry1
x1
#Rx1

y2
Ry2

x1
) !(Rx1

y1
Ry1

x2
#Rx1

y2
Ry2

x2
)

0 !(Rx2
y1

Ry1
x1
#Rx2

y2
Ry2

x1
) 1!(Rx2

y1
Ry1

x2
#Rx2

y2
Ry2

x2
)

~1

.

(39)

All the bracketed products of response coe$-
cients describe a chain of e!ects from a module
back to itself, i.e. each of them proceeds from an
intermediate in one module via the other module
back either to the same intermediate or to an-
other variable in the "rst module. For example,
RJ1

y1
Ry1

x1
and RJ1

y2
Ry2

x1
describe the e!ect chains

X
1
PY

1
PJ

1
and X

1
PY

2
PJ

1
. The sum of the



FIG. 5. The components of the overall intermodular re-
sponses of the steady-state variables of module 1 in Fig. 1(b)
to one of its own intermediates X

1
. These terms arise in the

second column of the matrix in eqn (39).
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two e!ects can be regarded as the total response
of J

1
to x

1
via the parts of the system outside

module 1, in this case module 2; we can write this
response as oJ1

x1
. Similarly (Rx1

y1
Ry1

x1
#Rx1

y2
Ry2

x1
) is

ox1
x1

, the e!ect of x
1

on itself via the intermediates
of module 2. Figure 5 depicts these summed
responses diagrammatically, using oJ1

x1
, ox1

x1
, and

ox2
x1

as examples. The total responses to x
2

are
written as oJ1

x2
, ox1

x2
, and ox2

x2
. Using this symbolism,

the matrix in eqn (39) is
1 !oJ1
x1

!oJ1
x2

0 1!ox1
x1

!ox1
x2

0 !ox2
x1

1!ox2
x2

~1

"

1
oJ1
x1

(1!ox2
x2

)#oJ1
x2

ox2
x1

D
oJ1
x2

(1!ox1
x1

)#oJ1
x1

ox1
x2

D

0
1!ox2

x2

D
ox1
x2

D

0
ox2
x1

D
1!ox1

x1

D

, (40)
where the determinant

D"(1!ox1
x1

) (1!ox2
x2

)!ox1
x2

ox2
x1

. (41)

Using this result, the following is a representa-
tive example of an expression for a #ux-control
coe$cient in G1

1
:

GJ1
1a
"CJ1

1a
#

oJ1
x1

(1!ox2
x2

)#oJ1
x2

ox2
x1

(1!ox1
x1

) (1!ox2
x2

)!ox1
x2

ox2
x1

Cx1
1a

#

oJ1
x2

(1!ox1
x1

)#oJ1
x1

ox1
x2

(1!ox1
x1

) (1!ox2
x2

)!ox2
x1

ox1
x2

Cx2
1a

. (42)

As in eqn (35), the expression consists of the #ux-
control coe$cient CJ1

1a
, which quanti"es the

intramodular e!ect of a modulation of step 1a on
#ux J

1
, plus terms that quantify the e!ects on

J
1

via x
1

and x
2
. Each of the latter terms consists

of the intramodular concentration-control
coe$cient of 1a multiplied by an intermodular
response function. In order to interpret this re-
sponse function physically, we split it up accord-
ing to the numerator terms and consider each
one separately as a product of an intermodular
response path and a reverberation function. For
example, the left-hand response function consists
of the product of the response path oJ1

x1
and the

reverberation function

1!ox2
x2

(1!ox1
x1

) (1!ox2
x2

)!ox1
x2

ox2
x1

(43)

plus the product of the response path oJ1
x2

ox2
x1

and
the reverberation function

1
(1!ox1

x1
) (1!ox2

x2
)!ox1

x2
ox2
x1

. (44)

Note the di!erence between the two reverber-
ation functions: The response path oJ1

x1
does not
traverse X
2

and the reverberation term that con-
tains only X

2
appears in the numerator. The

response path oJ1
x2

ox2
x1

traverses both X
1

and X
2

and no reverberation terms appear in the
numerator. This property of the numerator of
a reverberation function, i.e. containing only
reverberation terms of intermediates not
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traversed by the response path, turns out to be
general. Table 1 gives the intermodular response
term for J

1
to X

1
if there were a third interme-

diate X
3

in module 1 (derivation not shown).
The response path oJ1

x1
is multiplied by reverber-

ation terms that traverse only X
2

and X
3
. Sim-

ilarly, the response path oJ1
x3

ox3
x1

, which traverses
both X

1
and X

3
, is multiplied by reverberation

terms that traverse only X
2
. For oJ1

x2
ox2
x1

it is X
3
.

The last two response paths traverse all three
TABLE 1

Numerator terms of the intermodular
response function that multiplies Cx1

1a

Denominator, D, terms of
the reverberation functions

Intermodular
response path

Numerator of the
reverberation function

oJ1
x1

[(1!ox2
x2

) (1!ox3
x3

)!ox2
x3

ox3
x2

] (1!ox1
x1

) (1!ox2
x2

)(1!ox3
x3
)

!ox2
x3

ox3
x2

(1!ox1
x1

)

#oJ1
x3

ox3
x1

(1!ox2
x2
) !ox1

x3
ox3
x1

(1!ox2
x2

)

#oJ1
x2

ox2
x1

(1!ox3
x3
) !ox1

x2
ox2
x1

(1!ox3
x3

)

#oJ1
x3

ox3
x2

ox2
x1

(1) !ox1
x3

ox3
x2

ox2
x1

#oJ1
x2

ox2
x3

ox3
x1

(1) !ox1
x2

ox2
x3

ox3
x1
X-intermediates and their reverberation function
has a numerator of 1. Note that reverberation
terms in the denominator that do not traverse all
intermediates are also multiplied by terms that
contain non-traversed intermediates.

The reverberation terms that appear in the
numerator counteract their e!ect in the denomin-
ator. The larger they are in relation to the other
reverberation terms the more the whole reverber-
ation function tends to one, and, hence, becomes in-
consequential. If they appeared only in the denom-
inator (i.e. if the numerator of the reverberation
function were (1) they would drive the reverber-
ation function away from 1 either towards zero (if
they were negative) or towards in"nity (if they were
positive). Therefore, their appearance in the numer-
ator partly nulli"es any stabilizing (homeostatic) or
destabilizing (amplifying) e!ect they would have
had, had they only appeared in the denominator.

The following re-arrangement of the inter-
modular response terms in eqn (42) allows for
a complementary physical interpretation:

GJ1
1a
"CJ1

1a
#

oJ1
x1
#oJ1

x2
ox2
x1
/(1!ox2

x2
)

1!ox1
x1
!ox1

x2
ox2
x1

/(1!ox2
x2
)
Cx1

1a

#

oJ1
x2
#oJ1

x1
ox1
x2
/(1!ox1

x1
)

1!ox2
x2
!ox2

x1
ox1
x2

/(1!ox1
x1
)
Cx2

1a
. (45)
The numerator terms describe the e!ect of an
intermediate in module 1 (X

1
or X

2
) on J

1
, via,

of course, the intermediates in module 2. For
example, in the intermodular response term that
modi"es Cx1

1a
, oJ1

x1
is the direct e!ect, while oJ1

x2
ox2
x1

is
the e!ect via X

2
, i.e. the e!ect of X

1
on X

2
via

module 2 and then of X
2

on J
1

again via module
2. However, because X

2
can also a!ect itself via

module 2 the 1/(1!ox2
x2

) reverberation function
appears as a modi"er of oJ1

x2
ox2
x1

. The denominator
contains the circular reverberation terms for X

1
;

ox1
x1

is the direct e!ect, while the ox1
x2

ox2
x1

is the e!ect
via X

2
, again modi"ed by 1/(1!ox2

x2
) for the same

reason as above. The intermodular response term
that modi"es Cx2

1a
yields the same interpretation,

as do those given above for the system with three
X-intermediates.

Finally, a diagrammatic view of the inter-
modular response patterns yields further insight.
The numerator and denominator terms of the
intermodular response functions in eqn (42) can



FIG. 6. The intermodular J
1
-response patterns to a

change in x
1
that result from expansion and simpli"cation of

the numerator of eqn (42). The two patterns preceded by
a minus sign counteract those preceded by a plus sign.

FIG. 7. The intermodular x
1
-response patterns to a

change in x
1
that result from expansion and simpli"cation of

the denominator of eqn (42). The two patterns preceded by
a plus sign counteract those preceded by a minus sign.
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be expanded using the expressions in eqn (39)
and simpli"ed; the terms that remain are depic-
ted diagrammatically in Figs 6 and 7. In both
numerator and denominator there are terms that
cancel; they are depicted in Fig. 8. The only terms
that need comment are the two terms in
Figs 6 and 7 that di!er from the others in that
their signs are the opposite of their partners'
signs, i.e. working against the trend. Further-
more, they all consist of a combination of two
unconnected cyclic interaction patterns, whereas
all the other terms consist of one cycle.

A representative example of an expression for
concentration control coe$cients in G1

1
is

Gx1
1a
"

1!ox2
x2

(1!ox1
x1
) (1!ox2

x2
)!ox1

x2
ox2
x1

Cx1
1a

#

ox1
x2

(1!ox1
x1

) (1!ox2
x2

)!ox2
x1

ox1
x2

Cx2
1a

, (46)

which, for the sake of interpretation (which is
now left to the reader), can be re-arranged as

Gx1
1a
"

1
1!ox1

x1
!ox1

x2
ox2
x1
/(1!ox2

x2
)
Cx1

1a
#

ox1
x2

/(1!ox1
x1
)

1!ox2
x2
!ox2

x1
ox1
x2

/(1!ox1
x1
)
Cx2

1a
. (47)

G2
1

control coe$cients of any variable j in
module 2 (i.e. J

2
, y

1
, or y

2
) with respect to any

step i in module 1 have the following form:

Gj
i
"

oj
x1
#oj

x2
ox2
x1

/(1!ox2
x2
)

1!ox1
x1
!ox1

x2
ox2
x1

/(1!ox2
x2
)
Cx1

i

#

oj
x2
#oj

x1
ox2
x2

/(1!ox1
x1
)

1!ox2
x2
!ox2

x1
ox1
x2

/(1!ox1
x1

)
Cx2

i
. (48)

The interpretation of the intermodular response
terms follows the same pattern as that given
above for the expressions for the G1

1
coe$cients.

2.6. FULLY INTERACTING MODULES

OF ORDER 3 AND HIGHER

Although it is obvious that the explicit expres-
sions for integral control coe$cients in systems



FIG. 8. The intermodular J
1

and x
1
-response patterns to

a change in x
1

that cancel during expansion and simpli"ca-
tion of the numerator and denominator of eqn (42).

FIG. 9. A fully interacting three-module system. (a) shows
explicitly all the interconnections between the modules,
while in (b) the interconnections are shown as arrows label-
led with the appropriate M-matrix (see text).
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consisting of three or more fully interacting mod-
ules must become increasingly complex as the
number of modules increase, they can in principle
be obtained for any fully interacting system with
n modules by means of the recursive algorithm
described in Appendix A.

In this section, we describe and analyse the
solution of a system consisting of three fully inter-
acting modules, while the solution of the four-
module system is obtained in Appendix A as an
example of the application of the algorithm.

The inverse of the M-matrix for the system in
Fig. 9,

M~1"

I M1
2

M1
3

M2
1

I M2
3

M3
1

M3
2

I

~1

, (49)

was obtained as described for the n"2 system.
From the elements of M~1 the expressions for the
integral control of one module on itself or on
other modules follow:

Gi
i
"D~1C

i
, (50)

Gj
i
"!(I!Mj

k
Mk

j
)~1 (Mj

i
!Mj

k
Mk

i
)D~1C

i
, (51)

where

D"(I!Mi
k
Mk

i
)!(Mi

j
!Mi

k
Mk

j
)

](I!Mj
k
Mk

j
)~1 (Mj

i
!Mj

k
Mk

i
) . (52)

Let us examine a speci"c case in order to
obtain more insight on what the products
of M-matrices in the solution mean. Consider
the e!ect of module 1 on its own independent
variables:

G1
1
"[I!M1

3
M3

1
!(M1

2
!M1

3
M3

2
)

](I!M2
3
M3

2
)~1(M2

1
!M2

3
M3

1
)]~1C

1
.

(53)

If the whole bracketed expression is multiplied
out we again obtain a matrix of the form in eqn
(30) from which we calculate

C
GJ1

1a
Gs1

1a

GJ1
1b

Gs1
1b
D"

CJ1
1a
#

a
D

Cs1
1a

CJ1
1b
#

a
D

Cs1
1b

b
D

Cs1
1a

b
D

Cs1
1b

,

(54)
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where

a
D
"

RJ1
s2

Rs2
s1
#RJ1

s3
Rs3

s1
#RJ1

s3
Rs3

s2
Rs2

s1
#RJ1

s2
Rs2

s3
Rs3

s1
1!Rs1

s2
Rs2

s1
!Rs1

s3
Rs3

s1
!Rs2

s3
Rs3

s2
!Rs1

s3
Rs3

s2
Rs2

s1
!Rs1

s2
Rs2

s3
Rs3

s1

(55)

and

b
D
"

1!Rs2
s3
Rs3

s2
1!Rs1

s2
Rs2

s1
!Rs1

s3
Rs3

s1
!Rs2

s3
Rs3

s2
!Rs1

s3
Rs3

s2
Rs2

s1
!Rs1

s2
Rs2

s3
Rs3

s1

. (56)
Similarly, we can obtain the solution for, say,
G2

1
as

C
GJ2

1a
Gs2

1a

GJ2
1b

Gs2
1b
D"

c
D

Cs1
1a

c
D

Cs1
1b

d
D

Cs1
1a

d
D

Cs1
1b

, (57)

where
c
D
"

RJ2
s1

(1!Rs2
s3
Rs3

s2
)#RJ2

s3
Rs3

s1
#RJ2

s3
Rs3

s2
Rs2

s1
1!Rs1

s2
Rs2

s1
!Rs1

s3
Rs3

s1
!Rs2

s3
Rs3

s2
!Rs1

s3
Rs3

s2
Rs2

s1
!Rs1

s2
Rs2

s3
Rs3

s1

, (58)

d
D
"

Rs2
s1
#Rs2

s3
Rs3

s1
1!Rs1

s2
Rs2

s1
!Rs1

s3
Rs3

s1
!Rs2

s3
Rs3

s2
!Rs1

s3
Rs3

s2
Rs2

s1
!Rs1

s2
Rs2

s3
Rs3

s1

. (59)
FIG. 10. The intermodular J
1
-response patterns to a

change in s
1

in the three-module system. Together, these
responses form the numerator of eqn (55).
These intermodular response expressions can be
physically interpreted in exactly the same way as
those in the previous section. The response paths
are diagrammatically depicted in Figs 10 and 11.

2.7. SPARSELY INTERACTING MODULES

The general solutions for the two-, three- and
four-module systems become more practicable
when they reduce to the solutions for more realis-
tic systems with sparse connections (this is one of
the reasons we give them in full). To illustrate
this, we make the simplifying assumption [see
Fig. 12(a)] that there is a strictly one-way connec-
tion between modules 2 and 3 in the three-
module system in Fig. 9, i.e. that, say M2

3
O0

while M2
3
"0. Equation (53) now becomes

G1
1
"[I!M1

3
M3

1
!M1

2
M2

1
#M1

3
M3

2
M2

1
]~1C

1
.

(60)
We can go further and assume, for instance, that
there is only a one-way cyclical connection be-
tween the modules [Fig. 12(b); an example of
a &&democratic'' hierarchy as given by Westerho!
et al. (1990)]. If the only non-zero matrices are
M1

3
, M3

2
and M2

1
, then

G1
1
"[I#M1

3
M3

2
M2

1
]~1C

1
. (61)



FIG. 11. The intermodular s
1
-response patterns to a

change in itself in the three-module system. Together, these
responses form the denominator of eqn (55).

FIG. 12. Di!erent forms of sparsely connected three-
module systems.
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This result can be generalized: if there is only
one-directional communication between the
n modules of a system so that a module can
communicate cyclically with itself then the
control of, say, module 1 on its own independent
variables is given by

G1
1
"(I!M1

2
M2

3
2Mn~1

n
Mn

1
)~1C

1
. (62)

If this feedback cycle is broken by, say,
M1

3
being zero, then G1

1
"C

1
(and by the same

token G2
2
"C

2
and G3

3
"C

3
); the integral con-

trol of a module on itself then becomes equal to
the intramodular control. Of course, module 1
can still a!ect modules 2 and 3, while
module 2 can still a!ect module 3. This system,
shown in Fig. 12(c), corresponds to a &&dicta-
torial'' type of system (Westerho! et al., 1990).
From eqn (51) we can deduce that for such a
dictatorial system

G3
1
"M3

2
M2

1
C

1
, (63)

G2
1
"M2

1
C

1
, (64)

G3
2
"M3

2
C

1
. (65)

This is similar to the Kahn & Westerho! (1991)
&&cascade control theorem''. The extension of
these results to systems with orders other than
three is obvious.

3. Attenuation/Ampli5cation of Control
in Multi-level Systems

In Section 2.4, we derived the relationship
between the integral control coe$cients of
a module on its own variables and the intra-
modular control coe$cients of that module. We
are now in a position to ask by which factor the
intermodular interactions change the intramodu-
lar control coe$cients of a module embedded in
a multi-level system. This factor must be a ratio
of integral and intramodular control coe$cients,
which we shall call an A-coe$cient (the A can
refer to either ampli"cation or attenuation, de-
pending on whether its value is greater or smaller
than one). In general, an A-coe$cient of a step
i in any module will be the ratio of a integral
control coe$cient of i with respect to any steady-
state variable y

j
and a intramodular control

coe$cient of i with respect to any steady-state
variable y

k
belonging to the same module in



276 J.-H. S. HOFMEYR AND H. V. WESTERHOFF
which step i occurs:

Ayk :yk
i

"

Gyj
i

Cyk
i

. (66)

We are particularly interested in A-coe$cients
of the type Ayj :yk

i
, i.e. the ratio of a integral and

intramodular control coe$cient of a step with
respect to the same variable, the step and the
variable belonging to the same module. The rea-
son is that this type of A-coe$cient quanti"es the
degree to which intramodular control is ampli-
"ed or attenuated when a module is embedded in
a multi-level system.

In the previous sections we obtained expres-
sions for integral control coe$cients in terms of
intramodular control coe$cients and intermodu-
lar response coe$cients. Simply dividing such
expressions by the relevant intramodular control
coe$cient gives the required A-coe$cient. Con-
sider, for example, the result of dividing eqn (35)
by CJ1

1a
:

GJ1
1a

CJ1
1a

"1#
RJ1

s2
Rs2

s1
1!Rs1

s2
Rs2

s1

CJ1
1a

Cs1
1a

. (67)

The ratio of integral to intramodular control
coe$cients on the left-hand side (l.h.s.) is per
de"nition AJ1 :J1

1a
. The ratio of control coe$cients

on the right-hand side (r.h.s.) might seem similar
to an A-coe$cient, but di!ers in that it is a ratio
of intramodular control coe$cients; such ratios
have been de"ned by Hofmeyr & Cornish-
Bowden (1996) as co-control coe.cients

Oyj :yk
i

"

Cyj
i

Cyk
i

. (68)

Using these de"nitions, eqn (67) can be written as

AJ1 :J1
1a

"1#
RJ1

s2
Rs2

s1
1!Rs1

s2
Rs2

s1

Os1 :J1
1a

. (69)

The intermodular response term that occurs in
this expression is unchanged and needs no fur-
ther comment. Whether intramodular control of
J
1

by step 1a is ampli"ed (AJ1 :J1
1a

'1) or at-
tenuated (AJ1 :J1

1a
(1) when module 1 is embedded

in the larger system depends on whether the
left-hand product of the intermodular response
term and the co-control coe$cient is positive or
negative. Typically, Os1 :J1

1a
'0 (increasing the ac-

tivity of 1a will increase both s
1

and J
1
), so that it

is the numerator RJ1
s2

Rs2
s1

of the intermodular re-
sponse term that would determine the direction
of the e!ect under normal circumstances; the
magnitude of the e!ect is determined by both
factors. The e!ect is absent (i.e. AJ1 :J1

1a
"1) when-

ever the steady state in module 1 is not sensitive
to the metabolism in module 2 (i.e. RJ1

s2
"0 or

Rs1
s2
"0), or whenever the concentration of

S
1
changes much less than does J

1
on modulation

of step 1a in module 1 in isolation (i.e. Os1 :J1
1a

P0).
An expression for the coe$cient As1 :s1

1a
can be

obtained by dividing eqn (36) by Cs1
1a

. This gives

As1 :s1
1a

"

1
1!Rs1

s2
Rs2

s1

. (70)

Here the direction of the e!ect depends solely on
the circular reverberation term. This must obvi-
ously be so: if s

1
has a positive intermodular e!ect

on itself, then s
1
-control by 1a is ampli"ed when

module 1 is embedded in the larger system; if the
intermodular e!ect is negative, s

1
-control is

attenuated.
In this section, we derived expressions for A-

coe$cients from previously obtained expressions
for integral control coe$cients. In Appendix B,
a general matrix formulation of A-coe$cients in
terms of co-control coe$cients and intermodular
response is derived.

The degree to which control of a system over
itself is ampli"ed or attenuated when it is embed-
ded in a larger multi-level system is independent
of the relative time-scales of the di!erent mod-
ules, provided that control is de"ned in terms of
ultimate rather than quasi-steady state. The rela-
tive relaxation times do depend on the relative
time-scales. This is clearly demonstrated by the
numerical simulation of the two-module scheme
in Fig. 13, the results of which are given in Fig. 14.
The simulation conditions are described in the
legend to Fig. 13.

Figure 14 follows the time course of the transi-
ent concentrations s from an initial steady state
following a modulation of the activity of step 2b.
On the graph are shown the new steady-state



FIG. 13. A democratic two-module system where module 1
represents enzyme synthesis and degradation, and module 2
a metabolic system in which the enzyme synthesized in
module 1 catalyses reaction 2a. The intermediate S in mod-
ule 2 acts as a suppressor of the synthesis of enzyme 1a. This
time-dependent behaviour of this system following a per-
turbation of the steady state was simulated using SCAMP
(Sauro, 1993). The rate equations were v

1a
"a/(2#100s),

v
1b
"ae/(1#e), v

2a
"200e/(11#s), v

2b
"bs/(1#s). With

a"1.77 and b"1 the steady state was calculated as
s"0.5068 and e"0.01935. With this steady state as the
initial condition, b was set to 0.99 (decreasing the activity of
2b by 1%) and the time evolution of the system followed.
The simulation was repeated at various values of a to create
di!erent time scales between the two modules. The results
are given in Fig. 14.

FIG. 14. Simulation of the time course for change in the
concentration of intermediate S in Fig. 13 following a 1%
decrease in the activity of step 2b. Each curve represents
a di!erent time scale between modules 1 and 2, the number
next to each curve being the ratio J

1
/J

2
of the steady-state

#uxes through modules 1 and 2. The dotted line at 0.5097 is
the steady state value of s predicted by Gs

2b
"!0.59, while

the dotted line at 0.5138 is the steady-state value of s pre-
dicted by Cs

2b
"!1.42, i.e. the value s would have reached if

module 2 were isolated. The attenuation coe$cients
As :s

2b
"0.42 is the ratio Gs

2b
/Cs

2b
. The original steady state

value of s is 0.5068.
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value as predicted by CJ2
2b

(the higher dotted line)
and by GJ2

2b
(the lowest dotted line). The relative

time-scales of the two modules, as measured by
the ratio of steady-state #uxes J

1
/J

2
, clearly

a!ects the time course: When the #ux J
1

is 1000-
fold lower than J

2
(which is probably quite realis-

tic, if not an underestimation), s actually attains
the value predicted by the intramodular coe$-
cient, after which it slowly relaxes to the steady
state predicted by the integral coe$cient. The
closer the time-scales of the two systems, the less
the overshoot, until, at comparable time-scales,
s moves directly to the steady state predicted
by GJ2

2b
.

4. Discussion

We have developed an analysis of the control
of intracellular reaction networks that consist of
distinct levels between which there is no net
transfer of chemicals. We have given a strict
de"nition of such multi-level networks in terms of
the organization of the #ux-stoichiometry matrix
K. Thanks to the sequencing of their genomes,
living systems are becoming de"ned in terms of
their total reaction content. Consequently, we
know that even relatively simple organisms have
conserved thousands of enzymes. In principle, we
now have the experimental tools in hand to
analyse the dynamic networks formed by
these enzymes. However, we are faced with the
complexity of thousands of enzymes that might
interact with thousands of enzymes through in-
termediates a!ecting their rates. Luckily, these
millions of possible interactions do not occur in
reality; most enzymes interact only with a few
other enzymes. This e!ective sparseness of inter-
actions gives hope that we may ultimately under-
stand living cells scienti"cally. Recognition of
structure in this sparseness allows simpli"cation.

One way to simplify is based on the recogni-
tion that parts of metabolism may only interact
through one or a few common intermediates
which are the products of one part and the sub-
strates of another part. This type of modularity
forms the basis for &&top-down'' or modular anal-
ysis by Westerho! and co-workers (Westerho!
& van Dam, 1987; Schuster et al., 1993) and
Brand and co-workers (Brown et al., 1990; Brand,
1996).

The modularity in multi-level networks as dis-
cussed here and in Kahn & Westerho! (1991) and
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Van der Gugten & Westerho! (1997) is of a dif-
ferent type. It extends our understanding of the
control of metabolic #uxes to include the levels of
signal transduction and gene expression (Wijker
et al., 1995). This of course is essential for func-
tional genome analysis (Teusink et al., 1998).

An example of the experimental relevance of
the multi-level modular approach resides in the
analysis of signal ampli"cation in signal trans-
duction through multi-cyclic cascades (Chock
& Stadtman, 1977; Goldbeter & Koshland,
1984; Ferrell, 1996; Ferrell & Machleder, 1998;
Kholodenko et al., 1997) [see, however, Brown
et al. (1997) and CaH rdenas (1997)].

The most important forerunner of this paper is
that of Kahn & Westerho! (1991), which had as
aim the extension of metabolic control analysis
to include modules that a!ect each other solely
by regulatory interactions and not by mass-
transfer. Of their theorems the one most pertinent
to the present analysis is the &&block composition
theorem'', which relates, in our terminology,
blocks of the integral #ux and concentration con-
trol matrices (their Uj

i
and Cj

i
), the intramodular

control matrices (their U
i

and C
i
), and those

blocks of the elasticity matrices that describe
intermodular e!ects (their Di

j
). The following is

one of the relationships that comprise the the-
orem and expresses the #ux-control of module
i upon j

Uj
i
"U

iAI# +
kOi

Di
k
Ck
jB . (71)

It shows that, because the r.h.s. contains integral
coe$cients Ck

j
, the block composition theorem

in general does not manage to express integral
control purely in terms of intramodular control
and intermodular response, although it does
achieve it explicitly for special cases such as
one-way cyclical multi-level networks [e.g.
Fig. 12(b)]. Also, recursive application of the two-
module theorem would in principle solve the
general case.

The analysis described in this paper solves this
problem, and also provides an alternative way
of arriving at many of the Kahn & Westerho!
(1991) conclusions. There are a number of other
signi"cant di!erences: Kahn & Westerho! (1991)
used Reder's (1988) structural equations as the
basis for their analysis, whereas our analysis is
based on the CE"I square matrix formulated
by the groups of Westerho! (Westerho! & Kell,
1987; Westerho! et al., 1994) and Cascante
(Cascante et al., 1989a, b), and generalized by
Hofmeyr & Cornish-Bowden (1996) who merged
it with Reder's (1988) method. A second di!er-
ence is that whereas Kahn & Westerho! (1991)
used the block-diagonalizability of the stoichio-
metric matrix as a criterion for multi-level sys-
tems not connected by mass-transfer, we use the
less limiting criterion of block-diagonalizability
of the K-matrix as described by Schuster
& Schuster (1992) and Heinrich & Schuster
(1996) (an example is given further on).

Another recent paper that uses the CE"I
formulation to study a multi-level system is that
by Van der Gugten & Westerho! (1997). These
authors focused on the various ways the control
of multi-level systems can be analysed, and for-
mulated the unconnected multi-level system that
would have control properties identical to those
of the connected multi-level system. Equations
analogous to our eqn (25) were central to this
analysis. They also demonstrated that the sys-
temic e!ect may be either incorporated in the
control coe$cients or in &&global'' elasticity coe$-
cients, or in both, but that the various types of
control and elasticity coe$cients should not be
confused.

An issue of general importance is of whether
cellular processes truly form a multi-level net-
work, and, therefore, whether the analysis de-
veloped in this paper is actually of any practical
use. Our de"nition for multi-level modularity is
based on the absence of mass-transfer between
modules; super"cially, this criterion seems un-
attainable in many cases. For example, the
DNA}mRNA}enzyme}metabolism cascade is
connected by mass transfer in that amino acids
and nucleotides (products of metabolism), respec-
tively, serve as substrates for enzymes and for
DNA and RNA. The di!erent hierarchical levels
are also connected by coenzyme pairs that trans-
fer groups from one level to the other. However,
more careful analysis shows that, usually, meta-
bolic systems can be regarded as e!ectively iso-
lated from the modules which synthesize their
enzymes and polynucleotides. Consider, for
example, the pathway depicted in Fig. 15: the



FIG. 15. A mass-action connected system that can be-
come multi-level. Reactions 1a and 1b represent synthesis
and degradation of enzyme E, and reactions 2a and 2b
a metabolic system in which the enzyme E catalyses reaction
2a. The intermediate S is an amino acid that is used,
amongst others, for the synthesis of enzyme E, which means
that, in principle, the two subsystems are connected by mass
action. However, S is also used for the synthesis of all other
proteins and possibly also in other cellular processes (these
reactions are collectively represented by step 2b). The
text explains which conditions cause this system to be e!ec-
tively multi-level, i.e. when modules 1 and 2 can for all
practical purposes be considered to be unconnected by mass
action.
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metabolic system in question synthesizes amino
acid S, which, in turn, is used as one of the
substrates for the synthesis of enzyme 1a, which
catalyses step 2a. The two systems are unques-
tionably connected by mass transfer. If S was
used only for the synthesis of that speci"c
enzyme E (i.e. if step 2b did not exist) then
the system would not be multi-level. However,
S is used for the synthesis of all other proteins
and, possibly, also for other processes (collec-
tively represented by step 2b), so that in practice
the fraction of J

2a
carried by J

1
is minute

compared to the fraction carried by J
2b

. That this
e!ectively makes the system multi-level is clear
from the following, which shows how the K-
matrix for the system in Fig. 15 becomes block-
diagonalizable when J

1
@J

2a
and, therefore,

J
2b
+J

2a
:

Another case where, seemingly, there could be
mass transfer between levels is where the inter-
modular interaction is catalytic. Three such
examples are shown in Fig. 16. When depicted
as in schemes A, C and E there is no visible
mass transfer between the modules and it
seems obvious that they form true levels, but
when written more realistically to make the
interaction between enzyme and substrate
explicit it is not immediately clear whether
the systems are in fact multi-level because in all
three cases the enzyme X

2
is involved as part of

an intermediate in the other module. However,
as is clear from their E-matrices, all three
cases are in fact multi-level because their K-
matrices (columns 1 and 3 in the following repres-
entations) remain block-diagonalizable. Close
inspection reveals that, although X

2
does par-

take in reaction 2, no mass transfer actually
takes place because of the catalytic nature of the
interaction.

The E-matrices for the system in Fig. 16(a) and
(b) are

Going from the simpler to the more explicit
representation does not change the overall pic-
ture. The system clearly remains &&dictatorial'' in
that in both matrices E2

1
is non-zero while E1

2
is

zero; there is one-way interaction between levels
only. However, if the protease that catalyses step
1b could also degrade complex Y

1
X

2
, so that

Y
1
X

2
and X

2
compete for the same active site,

then an elasticity ev1b
*y1x2+

would appear in E1
2
,

making two-way interaction between the levels
possible.
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In both the other systems, i.e. that in Fig. 16(c)
and (d) with E-matrices
and that in Fig. 16(e) and (f ) with E-matrices
non-zero elements, which means two-way inter-
action. Note that usually one would expect E1

2
to
contain, if anything, elasticities of reactions in
module 1 with respect to intermediates in module
2, which in these two cases do not exist, because
there is no direct interaction between Y

2
and

module 1 reactions. However, both the above
E1
2

blocks contain elasticities with respect to x
1
,

an intermediate in module 1, but, and this is
important, scaled with a concentration ratio that
contains [y

1
x
2
], the concentration of the com-

plex Y
1
X

2
, which forms part of module 2. It is

because module 1 in systems C, D, and E, F
is moiety-conserving that there can be &&back-
pressure'' from module 2 to module 1.
the simpler representation on the left is dicta-
torial, but the explicit representation on the right
is democratic because E1

2
now also contains
It is quite simple to understand this in physical
terms. A perturbation of any parameter in mod-
ule 2 changes the steady-state concentration to



FIG. 16. Examples of simple multi-level systems with
catalytic interaction between modules. System (a) consists of
two linear modules in one of which the enzyme X

2
that

catalyses the "rst reaction in the other module is synthesized
and degraded; system (c) is similar to (a) but the enzyme
exists in two interconvertible forms, one of which, X

2
, is

active; system (e) is a two-tier cascade of interconvertible
enzyme forms where the active enzyme X

2
in the "rst cycle

catalyses conversion 2a in the second. In the corresponding
systems (b), (d), and (f ) the catalytic mechanisms are explicit-
ly taken into account. In the text it is shown that, while this
does not a!ect the multi-levelness of these systems, it does
show surprising features of their behaviour. It is shown that,
while all three systems seem to be &&dictatorial'' [according to
(a), (c), and (e)], the analysis of their more realistic forms
show that the systems containing moiety-conserving cycles
are actually &&democratic''.
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some degree. Because the sum x
1
#x

2
#[y

1
x
2
]

is constant this means that x
1

and x
2

must also
change, which in turn will a!ect the reaction rates
in module 1. Indeed, E1

2
becomes zero when

[y
1
x
2
] is negligible compared to x

1
(this has also

been shown by Fell & Sauro, 1990). The fact that
elasticity coe$cients with respect to x

1
rather

than x
2

occur in E1
2

is a trivial consequence of the
choice of independent intermediates in construct-
ing the L-matrix; it can just as readily contain
elasticities with respect to x

2
.

We have assumed that, of the two enzyme
forms, only X

2
is catalytically active. In reality,

both forms are often active, di!ering in degree of
activity. However, although taking this into ac-
count complicates the analysis, it does not a!ect
the conclusions.
These examples also demonstrate that block-
diagonalizability of the stoichiometric matrix
(Kahn & Westerho!, 1991) is too stringent a con-
dition for the absence of mass transfer between
modules. Consider the stoichiometric matrices
for the system in Fig. 16(a) and (b):

The right-hand stoichiometric matrix is clearly
not block-diagonalizable, whereas we have
already shown that the K-matrix is.
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Appendix A

An Algorithm for Generating Intermodular
Response Expressions

In the main text, we derived the general
eqn (22) for the integral control coe$cients of
a single module (a block in G):

Gj
i
"(M~1)

ji
C

i
.

When iOj this equation describes the control of
the steps in module i on the steady-state variables
in module j; when i"j it describes the control of
module i on its own steady-state variables.

For a system with n fully interacting modules,
the following algorithm generates the expression
for either Gn

n
or Gn~1

n
(note that any two modules

can be renumbered as n and n!1). In the "rst
phase (steps 1}4) the matrix element (M~1)

n,n
(which corresponds to the intermodular response
term in the expression for Gn

n
) is generated; in the

second phase (step 5), the matrix element
(M~1)

n~1,n
(which corresponds to the inter-

modular response term in the expression for
Gn~1

n
) is generated. The algorithm was construc-

ted by induction from the explicit solutions of the
inverse M-matrices of n"2, 3, 4 fully connected
systems.

Step 1. To obtain the intermodular response
term in the expression for Gn

n
write the symbol

nMn
n
. The pre-superscript will act as a counter.

Step 2. Expand nMn
n

as follows:

n~1Mn
n
!n~1Mn

n~1
(n~1Mn~1

n~1
)~1n~1Mn~1

n
.
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Step 3. Repeat step 2 for each M term, de-
crementing the counter until it equals 1.

Step 4. In the "nal equation, replace each 1Mi
i

with an identity matrix I and remove the counter
from all M-terms.

Step 5. To obtain the intermodular response
term in the expression for Gn~1

n
pre-multiply the

intermodular response term obtained above with
the expression for n~1Mn~1

n
and do step 4.

We demonstrate the algorithm for the four-
module system.

(Steps 1}3)

4M4
4
"3M4

4
!3M4

3
(3M3

3
)~13M3

4

"(2M4
4
!2M4

2
(2M2

2
)~1 2M2

4
)

!(2M4
3
!2M4

2
(2M2

2
)~1 2M2

3
)

](2M3
3
!2M3

2
(2M2

2
)~1 2M2

3
)~1

](2M3
4
!2M3

2
(2M2

2
)~1 2M2

4
)

"(1M4
4
!1M4

1
(1M1

1
)~1 1M1

4
)

!(1M4
2
!1M4

1
(1M1

1
)~1 1M1

2
)

](1M2
2
!1M2

1
(1M1

1
)~1 1M1

2
)~1

](1M2
4
!1M2

1
(1M1

1
)~1 1M1

4
)

![(1M4
3
!1M4

1
(1M1

1
)~1 1M1

3
)

!(1M4
2
!1M4

1
(1M1

1
)~1 1M1

2
)

](1M2
2
!1M2

1
(1M1

1
)~1 1M1

2
)~1

](1M2
3
!1M2

1
(1M1

1
)~1 1M1

3
)].

][(1M3
3
!1M3

1
(1M1

1
)~1 1M1

3
)

!(1M3
2
!1M3

1
(1M1

1
)~1 1M1

2
)

](1M2
2
!1M2

1
(1M1

1
)~1 1M1

2
)~1

](1M2
3
!1M2

1
(1M1

1
)~1 1M1

3
)].

][(1M3
4
!1M3

1
(1M1

1
)~1 1M1

4
)

!(1M3
2
!1M3

1
(1M1

1
)~1 1M1

2
)

](1M2
2
!1M2

1
(1M1

1
)~1 1M1

2
)~1
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(1M1

1
)~1 1M1

4
)].

(Step 4) The intermodular response term
(M~1)

44
in the expression G4

4
"(M~1)

44
C

4
is

(M~1)
44
"(I!M4

1
M1

4
)!(M4

2
!M4

1
M1

2
)

](I!M2
1
M1

2
)~1(M2

4
!M2

1
M1

4
)

![(M4
3
!M4

1
M1

3
)!(M4

2
!M4

1
M1

2
)

](I!M2
1
M1

2
)~1(M2

3
!M2

1
M1

3
)].

][(I!M3
1
M1

3
)!(M3

2
!M3

1
M1

2
)

](I!M2
1
M1

2
)~1(M2

3
!M2

1
M1

3
)].

][(M3
4
!M3

1
M1

4
)!(M3

2
!M3

1
M1

2
)

](I!M2
1
M1

2
)~1(M2

4
!M2

1
M1

4
)].

(Step 5) The intermodular response term
(M~1)

34
in the expression G3

4
"(M~1)

34
C

4
is

obtained as 3M3
4
(M~1)

44
, which can be written

in the expanded form

[(M3
4
!M3

1
M1

4
)!(M3

2
!M3

1
M1

2
)

](I!M2
1
M1

2
)~1(M2

4
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4
)](M~1)

44
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Appendix B

A Matrix Formulation that Relates
A-coe7cients to Co-control Coe7cients

and Intermodular Response

A-coe$cients are introduced into the integral
control-matrix eqn (5) in exactly the same way as
co-control coe$cients were introduced (Hofmeyr
et al., 1993; Hofmeyr & Cornish-Bowden, 1996),
i.e. by inserting the diagonal matrix product
D(C)~1 )D(C)"I between G and E to give

G )D(C)~1 )D(C) )E"I. (B.1)

D(C) is a square matrix that contains intra-
modular control coe$cients on its diagonal.
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In order to distinguish internal response from
intermodular response, we again insert the block-
diagonal matrix product D(E) )D (C)"I
between D(C) and E to obtain:

G )D(C)~1 )D (C) )D (E) )D(C) )E"I. (B.2)

For the two-module system in Fig. 1(a) with
the intramodular control coe$cients in D(C)
referring to the #uxes this equation would be

The "rst product pair, i.e. G )D(C)~1, gives A,
a partitioned matrix of A-coe$cients. The second
product pair, i.e. D(C) )D(E), gives a block-
diagonal matrix D(R) of intramodular internal
response coe$cients (Hofmeyr et al., 1993; Hof-
meyr & Cornish-Bowden, 1996). The last product
pair, i.e. D(C) )E, is, as before, the intermodular
response matrix M. An intramodular internal
response coe$cient of steady-state variable
y with respect to s

j
via step i is de"ned as (Kahn

& Westerho!, 1991; Hofmeyr et al.,. 1993)

iRy
sj
"Cy

i
evi
sj
, (B.4)

where Cy
i

is a y-control coe$cient of step i, and
evi
sj

is the elasticity coe$cient of step i towards
intermediate concentration s

j
.

Therefore,

A )D (R) )M"I, (B.5)

which, for the two-module system is

Equation (B.5) can also be written as

A )D(R)"M~1 (B.7)

or

A"M~1 )D(R)~1. (B.8)

Each of the matrix blocks in D(R)~1 is the
inverse of an intramodular internal response
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matrix, which, equals the corresponding intra-
modular co-control matrix (Hofmeyr et al., 1993;
Hofmeyr & Cornish-Bowden, 1996). Elements of
this matrix quantify the extent to which variables
within modules vary together when the activity of
any step is modulated. Therefore,

A"M~1 )D(O). (B.9)

For the two-module example eqn (B.8) can be
written as

For the A-coe$cients of a speci"c module i one
can write

Ai
i
"(M~1)

ii
Oi

i
. (B.11)

To give an example, for module 1 in the two-
module system this equation is

A1
1
"(I!M1

2
M2

1
)~1O1

1
. (B.12)

If the diagonal matrix used to construct A1
1

and
O1

1
contained J

1
-control coe$cients the explicit
matrix equation is

GJ1
1a

CJ1
1a

GJ1
1b

CJ1
1b

Gs1
1a

CJ1
1a

Gs1
1b

CJ1
1b

"

1
RJ1

s2
Rs2

s1
1!Rs1

s2
Rs2

s1

0
1

1!Rs1
s2
Rs2

s1

1 1

Cs1
1a

CJ1
1a

Cs1
1b

CJ1
1b

(B.13)

or, in terms of A and O-coe$cients,

C
AJ1 :J1

1a
As1 :J1

1a

AJ1 :J1

1b
As1 :J1

1b
D"

1
RJ1

s2
Rs2

s1
1!Rs1

s2
Rs2

s1

0
1

1!Rs1
s2
Rs2

s1

]C
1

Os1 :J1

1a

1
Os1 :J1

1b
D . (B.14)

Solving for the "rst row of A1
1

gives

AJ1 :J1

1a
"1#

RJ1
s2

Rs2
s1

1!Rs1
s2
Rs2

s1

Os1 :J1

1a
, (B.15)

AJ1 :J1

1b
"1#

RJ1
s2

Rs2
s1

1!Rs1
s2
Rs2

s1

Os1 :J1

1b
. (B.16)

If the diagonal matrix used to construct A1
1
and

O1
1

contained s
1
-control coe$cients one obtains

C
AJ1 :s1

1a
As1 :s1

1a

AJ1 :s1
1b

As1 :s1
1b
D"

1
RJ1

s2
Rs2

s1
1!Rs1

s2
Rs2

s1

0
1

1!Rs1
s2
Rs2

s1

]C
OJ1 :s1

1a
1

OJ1 :s1
1b
1 D . (B.17)

Solving for the second row of A1
1

gives

As1 :s1
1a

"As1 :s1
1b

"

1
1!Rs1

s2
Rs2

s1

. (B.18)
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