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We propose a model-driven approach for analyzing genomic expression data that

permits genetic regulatory networks to be represented in a biologically interpretable

computational form. Our models permit latent variables capturing unobserved

factors, describe arbitrarily complex (more than pair-wise) relationships at vary-

ing levels of re�nement, and can be scored rigorously against observational data.

The models that we use are based on Bayesian networks and their extensions.

As a demonstration of this approach, we utilize 52 genomes worth of A�ymetrix

GeneChip expression data to correctly di�erentiate between alternative hypothe-

ses of the galactose regulatory network in S. cerevisiae. When we extend the

graph semantics to permit annotated edges, we are able to score models describing

relationships at a �ner degree of speci�cation.

1 Introduction

The vast quantity of data generated by genomic expression arrays a�ords re-

searchers a signi�cant opportunity to transform biology, medicine, and phar-

macology using systematic computational methods. The availability of ge-

nomic (and eventually proteomic) expression data promises to have a pro-

found impact on the understanding of basic cellular processes, the diagnosis

and treatment of disease, and the eÆcacy of designing and delivering targeted

therapeutics. Particularly relevant to these objectives is the development of

a deeper understanding of the various mechanisms by which cells control and

regulate the transcription of their genes. In this paper, we present a prin-

cipled method for using genomic expression data to elucidate these genetic

regulatory networks.

While the potential utility of expression data is immense, some obstacles



will need to be overcome before signi�cant progress can be realized. First, data

from expression arrays is inherently noisy. Despite this, expression analysis

results to date have generally been reported without measures of statistical

signi�cance. Second, our knowledge regarding genetic regulatory networks is

extremely limited. Consequently, hypotheses about their structure or func-

tion may be incomplete or include knowledge at varying levels of re�nement.

Third, gene expression is regulated in a complex and seemingly combinatorial

manner.1 Nevertheless, most analysis of expression array data utilizes only

pair-wise measures to compare expression pro�les.

Existing techniques for analyzing genomic expression data do not permit

the statistical testing of hypotheses about the form or functioning of com-

plex multi-variate regulatory networks responsible for transcriptional control.

Typically, analysis is performed by clustering the expression pro�les of a col-

lection of genes using pair-wise measures such as correlation,2;3;4;5 Euclidean

distance,6;7;8 or mutual information.9;10 Results are visualized graphically and

used to demonstrate coordinated patterns of expression.2;5;7 Extensions to

this basic idea include identifying clusters with common cis-acting sequence

motifs8;11 and computing regulatory dependencies by correlating lagged time-

series data.12 As noise in expression array data is typically not analyzed in

detail, the signi�cance of alternative conclusions from these studies cannot be

quantitatively compared. Finally, a single framework currently does not exist

that permits models to describe latent variables (such as protein levels) and

make predictions that can be veri�ed later as data becomes available.

Previous e�orts at modeling genetic regulatory networks have generally

fallen into one of two classes, either employing Boolean models,13;14;15 which

are restricted to logical (Boolean) relationships between variables, or using

systems of di�erential equations to model the continuous dynamics of coupled

biological reactions.16;17;18 While low-level dynamics are critical to a complete

understanding of regulatory networks, they require a great deal of speci�ca-

tion, not only in terms of reaction rates and di�usion constants but also in

the precise structure of the relationships between variables.

The work of Friedman, et al.,19 represents a single point of departure by

using Bayesian networks to analyze expression data. Their work focuses on

the discovery of Bayesian networks, however, and does not consider either the

addition of latent variables for capturing the inuence of currently unobserved

variables or the annotation of edges for representing biological knowledge at

di�erent levels of re�nement.

We propose a technique for scoring models of genetic regulatory networks

based on Bayesian networks and their extensions. In our approach, Bayesian

networks are used to describe relationships between variables in a genetic



regulatory network. Unlike other approaches such as clustering, a Bayesian

network can describe arbitrary combinatorial control of gene expression and

thus it is not limited to pair-wise interactions between genes. Due to their

probabilistic nature, Bayesian networks are robust in the face of both imper-

fect data and imperfect models. Moreover, Bayesian networks permit latent

variables capturing unobserved factors and allow relationships at varying lev-

els of re�nement to be speci�ed. Most importantly, the models are biologically

interpretable and can be scored rigorously against observational data.

Sections 2 and 3 of this paper provide an introduction to Bayesian net-

works and the Bayesian scoring metric, a principled method for scoring these

networks. In Section 4, we use this metric to score models of the galactose

regulatory network in yeast. In Section 5, we extend Bayesian networks by

adding the ability to represent and score models with annotated edges, and

in Section 6, we score annotated models of the galactose regulatory network.

We discuss limitations and further extensions in Section 7.

2 Modeling regulatory networks with Bayesian networks

Bayesian networks20;21;22 are a member of the family of graphical models, a

class of exible and interpretable models for representing probabilistic rela-

tionships among variables of interest. Variables in a Bayesian network can be

either discrete or continuous, and can represent mRNA concentrations, pro-

tein concentrations, protein modi�cations or complexes, metabolites or other

small molecules, experimental conditions, genotypic information, or conclu-

sions such as diagnosis or prognosis. A variable that describes an observed

value is called an information variable, while a variable that describes an

unobserved value is called a latent variable.

A Bayesian network describes the relationships between variables at both

a qualitative and a quantitative level. At a qualitative level, the relation-

ships between variables are simply dependence and conditional independence.

These relationships are encoded in the structure of a directed graph, S, to
achieve a compact and interpretable representation. Vertices of the graph

correspond to variables, and directed edges between vertices represent depen-

dencies between variables. Formally, if X and Y are d-separated by a set of

vertices Z, then X and Y are conditionally independent given Z. In particu-

lar, if there is a directed edge from X to Y , then Y is dependent on X . Since

Y can have multiple incoming directed edges, it can depend combinatorially

on multiple variables. We call variables that have a directed edge to Y the

parents of Y , denoted Pa(Y ).
At a quantitative level, relationships between variables are described by



a family of joint probability distributions that are consistent with the inde-

pendence assertions embedded in the graph. Each member of this family is

described by the vector of parameters, �, that characterize it. As this method

is Bayesian in nature, we do not consider only a single value for �, but rather a

distribution over all possible values of � that are consistent with the structure

of the graph, S. In a Bayesian network, each joint probability distribution over
the space of variables can be factored into a product over the variables, where

each term is simply the probability distribution for that variable conditioned

on the set of parent variables:

P(X1; : : : ; Xn
) =

nY
i=1

P(X
i
jPa(X

i
)) (1)

The parameters that characterize the conditional probability distributions on

the right hand side of Equation 1 comprise the parameter vector, �.

Although we only discuss static models of regulatory networks in this pa-

per, Bayesian networks can also be used to model dynamic processes such as

feedback.23;24;25 This is accomplished by \unrolling" a static model, creating

a series of connected models that contain dependencies spanning across time

steps. In a modeling context, dynamic Bayesian networks smoothly interpo-

late between static graphical models and di�erential equation models.

3 Scoring network models with the Bayesian scoring metric

When scoring Bayesian networks against observational data, we employ the

Bayesian scoring metric, a principled statistical scoring metric that allows

us to directly compare the merits of alternative models of genetic regulatory

networks.a The model scores produced by the Bayesian scoring metric permit

us to rank alternative models based on their ability to explain observed data

economically. Moreover, the di�erence between the scores for any two models

leads to a direct signi�cance measure for determining how strongly one should

be preferred over the other.

According to the Bayesian scoring metric, the score of a model is de�ned as

the logarithm of the probability of the model being correct given the observed

data. Formally,

BayesianScore(S) = log p(SjD) (2)

= log p(S) + log p(DjS) + c (3)

aDue to space limitations, we present here only the basic intuition behind the Bayesian

scoring metric; more detailed quantitative treatments are available elsewhere.26;27 We note

that the entire discussion is equally valid in the case of dynamic Bayesian networks.



where the �rst term is the log prior distribution of S, the second term is the

log likelihood of the observed data D given S, and c is a constant that does

not depend on S. The likelihood term can be expanded as follows:

p(DjS) =

Z
� � �

Z

�

�(D;�jS) d� (4)

=

Z
� � �

Z

�

p(Dj�; S)�(�jS) d� (5)

From this last expression, we see that the likelihood component of a model's

score can be viewed as the average probability of generating the observed data

over all possible values of the parameter vector, �.

Because the Bayesian scoring metric includes an average over a family

of probability distributions, it is well suited to our context for a number of

reasons. First, it includes an inherent penalty for model complexity, thereby

balancing a model's ability to explain observed data with its ability to do

so economically. Consequently, it guards against over-�tting models to data.

Second, regulatory network models are permitted to be incomplete. An in-

complete model contains additional degrees of freedom pertaining to the pos-

sible ways of completing the model, and is thus penalized by the scoring

metric for these additional degrees of freedom. Scores improve as a model

converges to properly depict underlying regulatory mechanisms without ex-

traneous degrees of freedom, thereby allowing network elucidation to proceed

incrementally. Third, it allows us to represent uncertainty about the precise

dependencies between variables since we need not select a single value for �,

but rather can permit all feasible values to exist in the distribution over �.

One way to score models with latent variables is to instantiate the latent

variables by sampling from the distribution of possible values for each such

variable (e.g., MCMC methods). Though this is feasible for small networks,

it becomes computationally prohibitive as networks become very large. In

such settings, variational approximation methods28;29 can be used, either on

their own or in conjunction with sampling. Moreover, variational methods

also yield upper and lower bounds on the score, enabling the highest scoring

graph to often be identi�ed without resorting to sampling.

4 Example: scoring models of the galactose system

As an initial demonstration of the utility of Bayesian networks, we have chosen

to analyze and score models of the genetic regulatory network responsible

for the control of genes necessary for galactose metabolism in S. cerevisiae.



As this is a fairly well-understood model system in yeast, it a�ords us the

opportunity to evaluate our methodology in a setting where we can rely on

accepted fact. We are utilizing our methodology to explore other systems that

are less well-understood, but do not present those results here.

Examples of genetic regulatory networks represented as Bayesian net-

works are shown in Figure 1. Boxed variables describe mRNA levels that

can be determined from expression array data. Unboxed variables describe

protein levels; in this model we treat them as latent variables whose values

cannot be measured directly. The two networks in the �gure represent two

competing models of a portion of the galactose system in yeast, and di�er in

terms of the dependence relationships they assert hold between the variables

Gal80p, Gal4m, and Gal4p. To quote from Johnston, \it was originally pro-

posed that GAL80 protein is a repressor of GAL4 transcription. It is now

clear that GAL4 is expressed constitutively and that its activity is inhibited

by GAL80 protein posttranslationally."30 The network on the left (M1) repre-

sents the original proposition, while the network on the right (M2) represents

the new assertion. The models in Figure 2 represent the same conditional

independence assertions of the models in Figure 1, but are simpli�ed to reveal

the kernel of the distinction between the two hypotheses.

Expression data for this analysis consisted of 52 genomes worth of

A�ymetrix S. cerevisiae GeneChip data. To score these two competing hy-

potheses' ability to explain the observed data, we used the Bayesian scoring

metric, as described in the previous section. We performed binary quanti-

zation independently for each gene using a maximum-likelihood separation

technique. Other sensible quantization methods could also have been em-

ployed; for the particular data set and models in our example, the results do

not depend on the quantization method and are robust among various di�er-

ent sensible methods. In general, however, the quantization method employed

will a�ect reported scores, and we are developing quantization methods that

are suited for expression array data.b

Using the Bayesian scoring metric, we are able to compare the two mod-

els shown in Figure 2 in terms of their relative likelihood of explaining the

observed (now quantized) data. The model M1, in which Gal80p represses

transcription of Gal4m, received a score of -44.0, while the model M2, in which

Gal80p inhibits Gal4p activity, received a score of -34.5. This score di�erence

translates to the data being over 13,000 times more likely to be observed un-

der M2, the currently accepted model. For extra measure, we also scored a

bBayesian networks are capable of modeling continuous variables using parametric or semi-

parametric density estimation, but quantization is more robust in a setting such as this one

where only a small number of datasets is available.



Figure 1. Representative Bayesian networks for describing a portion of the galactose sys-

tem in yeast. The model M1 on the left represents the claim that Gal80p represses the

transcription of Gal4m, while the model M2 on the right represents the claim that Gal80p
inhibits Gal4p activity posttranslationally. In M1, Gal2m is independent of Gal80m when

conditioned on Gal4m, and in M2, Gal4m is marginally independent of Gal80m.

Figure 2. Simpli�ed Bayesian networks for describing a portion of the galactose system

in yeast. These simpli�ed versions of M1 and M2 capture the kernel of the conditional

independence assertions of the more complex models of Figure 1. As above, in M1, Gal2m

is independent of Gal80m when conditioned on Gal4m, and in M2, Gal4m is marginally

independent of Gal80m.

more complex model (M1 or M2) that would admit either of the two models

as special cases. The data do not persuade us to accept such a model since

the score (-35.4) is lower than that of the currently accepted model.

We then broadened our scope to consider not only these three models,

but all possible models among these three variables.c Results of this analysis

are shown in Figure 3. As is evident from the �gure, the models fall into two

primary groupings based on their score: those that include an edge between

Gal80 and Gal2 (unshaded) which score between -34.1 and -35.4, and those

cNote that some model possibilities are equivalent to others in that they describe the same

set of conditional independencies; we thus consider all possible model equivalence classes.



Figure 3. Scores for all model equivalence classes of the three variable galactose system.

The classes of models that score poorly are shown shaded. The previously considered models

M1, M2, and (M1 or M2) are indicated.

that do not include an edge between Gal80 and Gal2 (shaded) which score

between -42.2 and -44.0. This lends support to the claim that Gal80 and Gal2

are very unlikely to be conditionally independent given Gal4, again consistent

with the currently accepted hypothesis.

5 Representing and scoring models with annotated edges

We now extend Bayesian network models by adding the ability to annotate

edges, permitting us to represent additional information about the type of

dependence relationship between variables. Although many such annotations

are possible, we consider here only four types in the context of binary variables:

� An unannotated edge from X to Y represents a dependence that can be

arbitrary (the default case). In the presence of unannotated edges from

all parents of Y , we can represent arbitrary combinatorial control of Y .

� A positive (\+") edge from X to Y indicates that higher values of X
will bias the distribution of Y higher. This monotonic inuence of X
on Y holds for all possible values of the other parents of Y , though the

strength of the inuence can vary with the setting of the other parents.

Formally, for all instantiations I of the variables in Pa(Y )=X , we require

P(Y = 1jX = 1; I) > P(Y = 1jX = 0; I).



� A negative (\�") edge from X to Y indicates that higher values of X
will bias the distribution of Y lower. This monotonic inuence of X on Y
holds for all possible values of the other parents of Y , again with possibly

varying strength. Formally, for all instantiations I of the variables in

Pa(Y )=X , we require P(Y = 1jX = 0; I) > P(Y = 1jX = 1; I).

� A positive/negative (\+/�") edge from X to Y indicates that Y 's de-
pendence on X is either positive or negative but the true relationship is

not known. This inuence of X on Y holds for all possible values of the

other parents of Y , again with possibly varying strength.

Because edge annotations describe the relationship between a variable and

a single parent while Bayesian networks describe the relationship between

a variable and all its parents, we have chosen to specify the semantics of

annotations by requiring that the implied constraints hold for all possible

values of the other parents.

A given Bayesian network can have any combination of edge annotations.

This allows us to represent �ner degrees of re�nement regarding the types of

relationships between variables when we desire, but does not force us to do

so since unannotated edges are always permitted. It also permits a model

to evolve as more knowledge is gained about the types of inuences that are

present in the biological system under study. For example, all edges can be

initially unannotated, with + and � annotations being added incrementally

as activators and repressors are identi�ed.

The implied constraints on the form of the dependence between variables

permit us to score annotated models much as we score unannotated models.

We simply modify the scoring metric so that the likelihood term is now the

average probability of generating the observed data over all possible values of

the parameter vector � that satisfy the constraints implied by the annotations.

6 Example: scoring annotated models of the galactose system

When we expand the semantics of Bayesian networks to include annotated

edges, we are able to score models that describe more �ne-grained relation-

ships between variables. For example, when we consider again the two models

M1 and M2, and allow the edges in each model to take on all possible com-

binations of annotations (+, �, or +/�), we are able to score the models as

shown in Table 1. In model M1, adding di�erent kinds of annotations fails

to change the score signi�cantly, as the structure of the graph is fundamen-

tally limited in explaining the observed expression data. The same e�ect is

observed when the edge between Gal4 and Gal2 is considered in model M2,



Table 1. Scores for models M1 and M2 under all possible con�gurations of annotated edges.

Gal4 ! Gal2 Gal4 ! Gal2

� +/� + � +/� +

Gal80 � -45.33 -44.58 -44.16 Gal80 � -48.89 -47.27 -46.68

# +/� -44.59 -43.83 -43.41 # +/� -35.53 -35.44 -35.36

Gal4 + -44.17 -43.41 -42.98 Gal2 + -34.83 -34.75 -34.66

M1 M2

which is consistent with the results of Figure 3 indicating that the coupling

between Gal4 and Gal2 is indeed quite weak. In contrast, adding a + an-

notation to the edge between Gal80 and Gal2 results in a score comparable

with previously achieved scores, but adding a � annotation to the same edge

worsens the score dramatically. Such an asymmetric response is to be ex-

pected as failure to explain the observed data is more revealing than success.

This example illustrates that when the constraints implied by edge annota-

tions cannot be satis�ed by the data, scores result that are as poor as when

the underlying structure is incorrect. For this reason, annotations serve as a

useful discriminator of the kinds of relationships present in the data.

Although Gal80 is known to act in a repressive role in the cell, its level

increases as galactose becomes available for metabolism. This increase, how-

ever, is more than o�set by a rise in the level of a factor that counteracts

the e�ect of Gal80. The identity of this factor is currently unknown and

thus remains unmodeled here, but it is believed to be a byproduct of the

metabolism of galactose.30 A complete model would include the e�ect of this

latent (unmeasured) variable, and in such a model, it would be expected that

with suÆcient data, the edge between Gal80 and Gal2 would be labeled �,
corresponding to the direct repressive role of Gal80. Nevertheless, in the lim-

ited model considered here, a + annotation for the edge is indeed correct as

the level of Gal80 rises concomitantly with the level of Gal2 in our experimen-

tal data. This example reveals that caution must be used when interpreting

results from models that are incomplete.

7 Discussion/Conclusion

The galactose example is intended to illustrate that expression array data

can be quite useful in elucidating regulatory networks. While nine of the 52

experiments were carbon source time-series experiments, it should be noted



that none of the 52 was performed with the goal of distinguishing between

these two models. Nevertheless, they were successfully exploited to select the

currently accepted model over the one that had previously been postulated to

be true, as well as clarifying the degree and sign of the dependencies between

the variables in these data sets. As more experiments become available and

more complex models are formulated, these methods will be able to distinguish

between subtle di�erences in proposed models in ways that are not possible

without computational assistance.

As previously discussed, model scores depend on the available data, which

has two implications. First, while Bayesian networks are well-suited to deal-

ing robustly with noisy data, as noise increases, the score di�erence between

correct and incorrect models (and thus the signi�cance) goes down. In the

limit of uninformative data, correct models will score as poorly as incorrect

ones, which is to be expected. Second, the ability of particular data to en-

hance score di�erence between models suggests the possibility of performing

experimental suggestion in the future. In such a context, existing models and

data could be used to generate suggestions for new experiments, yielding data

that would optimally elucidate a given regulatory network.

One limitation of comparing regulatory network models is that human

e�ort is needed to formulate the models being compared. However, with a

principled scoring metric, automatic model induction becomes possible. We

are currently working to develop model induction methods, especially ones

that are feasible in models with latent variables.

As for the cost associated with scoring large models, it should be noted

that this cost is to a large extent based on the in-degree (number of parents)

of the variables in the models. As we scale up to larger models, the in-degree

is likely to remain fairly small whereas the out-degree might be very large,

which is �ne for our Bayesian network approach.
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