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Genomic, biochemical, and strain-specific data can be assembled to define an in silico
representation of the metabolic network for a select group of single cellular organisms.
Flux-balance analysis and phenotypic phase planes derived therefrom have been
developed and applied to analyze the metabolic capabilities and characteristics of
Escherichia coli K-12. These analyses have shown the existence of seven essential
reactions in the central metabolic pathways (glycolysis, pentose phosphate pathway,
tricarboxylic acid cycle) for the growth in glucose minimal media. The corresponding
seven gene products can be grouped into three categories: (1) pentose phosphate
pathway genes, (2) three-carbon glycolytic genes, and (3) tricarboxylic acid cycle genes.
Here we develop a procedure that calculates the sensitivity of optimal cellular growth
to altered flux levels of these essential gene products. The results indicate that the E.
coli metabolic network is robust with respect to the flux levels of these enzymes. The
metabolic flux in the transketolase and the tricarboxylic acid cycle reactions can be
reduced to 15% and 19%, respectively, of the optimal value without significantly
influencing the optimal growth flux. The metabolic network also exhibited robustness
with respect to the ribose-5-phosphate isomerase, and the ribose-5-phosephate
isomerase flux was reduced to 28% of the optimal value without significantly effecting
the optimal growth flux. The metabolic network exhibited limited robustness to the
three-carbon glycolytic fluxes both increased and decreased. The development
presented another dimension to the use of FBA to study the capabilities of metabolic
networks.

Introduction

Genome sequencing and bioinformatics are beginning
to reveal the complete set of molecular components
involved in cellular activities. Furthermore, it is also clear
that the integrated function of biological systems involves
complex interactions among the components that have
been identified through bioinformatics and genomics.
Importantly, the properties of complex systems cannot
be predicted simply on the basis of the complete descrip-
tion of their components, and the emergent properties
of biological systems need to be studied (1, 2). To
understand the complexity inherent in cellular networks,
approaches that focus on the systemic properties of the
network are required. The focus of such research repre-
sents a departure from the classical reductionist ap-
proach to the integrated approach (3) to understanding
the interrelatedness of gene function and the role of each
gene in the context of multigenetic cellular functions or
genetic circuits (4, 5).

The engineering approach to analysis and design is to
have a mathematical or computer model, e.g., a dynamic
simulator, of a cellular process that is based on funda-
mental physicochemical laws and principles. There has
been a long history of mathematical modeling of meta-
bolic systems, which dates back to the to the mid 1960s.
With the availability of analogue computers and the
knowledge of metabolic regulation, dynamic simulations

of simple metabolic and genetic control loops appeared
(6). The dynamic stability of such control loops became a
focus of attention (7, 8), given the experimental observa-
tions of oscillatory dynamics in yeast glycolysis (9).

The systemic nature of metabolic function was appar-
ent, and so was its complexity. However, the availability
of enzyme kinetic information was fragmented, and
attention turned to developing methods that could shed
light on the relative importance of various metabolic
events. Methods for sensitivity analysis of metabolic
regulation began in the 1960s (10) and continued into
the 1970s (11, 12). The results of these undertakings were
biochemical systems theory (BST) and metabolic control
analysis (MCA), and some useful results have been
obtained using these approaches (13).

Establishing complete kinetic models of cellular me-
tabolism became a scientific goal, whose intended use was
to elucidate the systemic behavior of metabolic networks.
Because of its simplicity, the human red blood cell
represented the best opportunity to achieve this goal.
Early metabolic models of human red blood cell metabo-
lism appeared in the 1970s (11) and continued through-
out the 1980s and 1990s (14-16). Insights into the
functioning of this cell have resulted from these analyses
(11, 17, 18). Although interesting in their own right,
studies of red cell metabolism are not directly useful for
organisms of industrial importance.

While the ultimate goal is the development of dynamic
models for the complete simulation of metabolic systems,
the success of such approaches has been severely ham-
pered by the current lack of kinetic information on the
dynamics and regulation of metabolic reactions. However,
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in the absence of kinetic information it is still possible
to accurately assess the theoretical capabilities and
operative modes of metabolic systems using metabolic
flux balance analysis (FBA) (5, 19-23). FBA is based on
the fundamental physicochemical constraints on meta-
bolic networks. FBA only requires information regarding
the stoichiometry of metabolic pathways and the meta-
bolic demands; furthermore, FBA can incorporate ad-
ditional information when it is available. FBA is par-
ticularly applicable for post-genomic analysis, because
the stoichiometric parameters can be defined from the
annotated genome sequence (21).

In a previous article, we have examined the capability
of in silico mutant E. coli metabolic networks to support
growth and compared the results to the wildtype. By
using computer simulations, it was determined that
seven metabolic reactions were essential for the aerobic
growth of E. coli in glucose minimal media (24). The
remaining reactions were determined to be nonessential,
since the metabolic network maintained the capability
to bypass simulated metabolic defects, often with little
or no effect on the in silico maximal biomass yield. In
this article we will further examine the essential meta-
bolic reactions by examining the metabolic consequences
of reduced metabolic flux carrying capacity in the es-
sential reactions. The results indicate the redundancy
and robustness in the function of the respective metabolic
reactions in the metabolic network by examining the
sensitivity of the objective function to the quantitative
flux levels. The sensitivity analysis can provide informa-
tion regarding the experimental measurements that are
likely to provide the most information toward quantita-
tively describing the metabolic network and can be used
for in silico experimental design and assessing the value
of the in silico predictions.

Describing Metabolic Systems
A metabolic network is a collection of enzymatic

reactions that serve to biochemically process metabolites
within the cell and transport processes that convert
extracellular metabolites to intracellular metabolites and
vice versa. To quantitatively describe metabolic networks,
dynamic mass balances are written for each metabolite
in the network, generating a system of ordinary dif-
ferential equations that describe the transient behavior
of metabolite concentrations:

where vj corresponds to the jth metabolic flux, Xi repre-
sents the ith metabolite, and the stoichiometric coefficient
Si,j stands for the number of moles of metabolite i formed
(or consumed) in reaction j. Equation 1 is particularly
difficult to solve since the metabolic fluxes are often
nonlinear functions of the metabolite concentrations, as
well as a set of kinetic parameters that are difficult to
measure or estimate. The complexity associated with
estimating the functional relation between the metabolic
fluxes and the metabolite concentrations and the associ-
ated kinetic parameters has hampered the quantitative
analysis of metabolic networks.

Constraining Metabolic Functions
Given the complexities associated with quantitative

analysis of metabolic systems based on kinetic charac-
terization of the components, we have utilized a concep-
tually different approach to the analysis of metabolic
networks. First, we defined fundamental physicochemical

constraints to which the metabolic network is con-
strained. Then, the metabolic capabilities were assessed
subject to the imposed constraints. The capabilities are
analyzed under the steady state assumption. It should
be noted that steady state analysis is applicable to some
aspects of metabolism; however, the approach will not
be appropriate for studying all cellular processes, such
as the cell cycle or signal transduction. Herein, we are
interested in metabolic processes and their relation to
cellular growth; thus the characteristic time of the
processes is about an hour. Metabolic transients within
the cell typically occur with time constants on the order
of seconds to minutes (25); thus under our “window of
observation” the metabolic network is essentially in a
steady state and the steady-state analysis will be ap-
propriate. The steady-state mass, energy, and redox
balance constraints are imposed by simplifying eq 1:

where S is the stoichiometric matrix and v is the flux
vector. While the system is closed to the passage of
certain metabolites, others are allowed to enter or exit
the system via exchange fluxes (or pseudoreactions (26)).
These fluxes do not represent biochemical conversions
or transport processes such as those of internal fluxes
but can be thought of as representing the inputs and
outputs to the system. For example, the demand on a
metabolite for further processing or incorporation into
cellular biomass creates an exchange flux on the internal
cellular metabolite. Thus, a distinction is made between
internal and external metabolites in the system, therefore
closing the material balance to all metabolites as indi-
cated by eq 2.

To complete the in silico representation of the meta-
bolic network we included the constraints on the indi-
vidual metabolic reaction fluxes due to reaction thermo-
dynamics and the input/output characteristics of the
network. All reversible metabolic reactions were assumed
to have the capability to carry any metabolic flux (i.e.,
-∞ e vi e ∞; where vi is the flux in reversible reactions),
whereas irreversible metabolic reactions fluxes were
restricted to be positive (i.e., 0 g vi g ∞; where vi is the
flux in irreversible reactions). Although constraints on
the internal fluxes were defined as infinite, the magni-
tude of each flux in the optimal solution was examined
and compared to measured fluxes (27, 28). The revers-
ibility of each reaction in the metabolic network was
determined case by case on the basis of the literature
and compared to the EcoCyc database (29). The metabolic
enzymes identified in the complete E. coli K12 genome
sequence and the online databases (29-31) were used
to reconstruct the metabolic network (see supplementary
information at http://gcrg.ucsd.edu/supplementary_data/
BP2000/main.htm). It should be noted that there are
instances where the same enzyme can catalyze multiple
reactions (e.g., different substrates or cofactors), and this
situation was considered by including all reactions cat-
alyzed by an enzyme as a separate column in the stoi-
chiometric matrix. The details of this metabolic recon-
struction have been described elsewhere (24). Addition-
ally, constraints were placed on the exchange fluxes to
indicate the environmental conditions. For example, met-
abolites not available to the cell are constrained to not
enter the cell: -∞ e bi e 0, where bi (influx defined as
positive) is the exchange flux for a metabolite not
available in the simulated environment. It should be
noted that all metabolites that have the capability to
leave the cell always had unconstrained metabolic fluxes

dXi

dt
) ∑

j

Sijvj (1)

S ‚ v ) 0 (2)
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in the net outward direction, whereas the influx con-
straints were defined by the simulated environmental
conditions. For the analysis herein, the exchange flux for
inorganic phosphate, ammonia, carbon dioxide, oxygen,
sulfate, potassium, and sodium were unconstrained,
whereas the uptake of the carbon source was constrained
as specified.

Demands on the Metabolic Network
Under changing substrate/supply conditions metabolic

networks are continuously faced with a balanced set of
biosynthetic demands (i.e., production of amino acids,
nucleotides, phospholipids, as well as energy and redox
potential). Effectively this means that the network must
generate a balanced set of metabolites that are used to
produce biomass. The biosynthetic demands for growth
were determined from the biomass composition of E. coli
(32, 33), and a metabolic flux, defined as the growth flux
(vgrowth), utilizes the biosynthetic precursors in the ap-
propriate ratios so as to generate biomass:

where di (mmol ‚ g-dry weight (DW)-1) is the E. coli
biomass composition of metabolite i. One gram of biomass
is produced per unit flux in the growth flux, vgrowth, and
if the fluxes are represented with a basis of 1 g-DW ‚ h
(22), the growth flux is equivalent to the growth rate.
The biomass composition is not constant but depends on
the growth rate and the growth conditions (33). However,
we have assumed that the biomass composition is con-
stant since it has been shown that the optimal solution
is not sensitive to the biomass composition (34), and this
observation is also true for our system.

In addition to the biosynthetic demands on the meta-
bolic network, we have also imposed maintenance re-
quirements on the metabolic system. The maintenance
requirements included were for growth-associated and
non-growth-associated maintenance. We imposed a
growth-associated maintenance of 23 mmol ATP ‚ g-DW-1

and a non-growth-associated maintenance of 5.87 mmol
ATP ‚ g-DW-1 ‚ h-1 (35).

Exploring the Metabolic Capabilities
The constraints on the metabolic network define the

boundaries within which the metabolic system must
operate. The mass, energy, and redox balance constraints
are imposed by the linear homogeneous set of equations
(eq 2). The nullspace of the stoichiometric matrix, S,
contains all flux vectors that satisfy the mass, energy,
and redox balance constraints (36). However, there are
additional physicochemical constraints on the metabolic
network, such as the thermodynamic constraints and the
capacity constraints on the exchange fluxes, which are
enforced by linear inequalities. The simultaneous en-
forcement of all the metabolic constraints defines a
region, the feasible set, that contains all feasible metabolic
flux vectors. The feasible set is not a vector space as is
the nullspace, as a result of the linear inequality con-
straints. Importantly, the feasible set defines the meta-
bolic capabilities of the system. The performance capa-
bilities of any metabolic network reside in the feasible
set. In fact, the answer to any question related to the
general structure and fitness of the network lies with this
region. While the feasible set offers a convenient way of
defining metabolic capabilities, the question arises, how
do we best explore the specific functions of a metabolic
network?

One approach that has been used to explore the
relationship between the metabolic genotype and phen-
otype for a number of organisms is linear optimization
(19, 21, 22, 37). Linear optimization was used to deter-
mine the optimal flux distributions within a network so
as to maximize/minimize a particular objective function.
A linear programming problem is defined as follows,
where a linear objective function is maximized or mini-
mized subject to a series of linear equality and inequality
constraints:

The linear programming formalism is analogous to the
system of linear equalities/inequalities that form the
constraints on the metabolic network. The objective
function, Z, is defined by assigning the appropriate values
to the c vector; herein, the c vector was taken as the unit
vector in the direction of the growth flux. We used the
reduced costs from the linear programming solution to
identify alternate optimal solutions. In metabolic engi-
neering applications, the objective function can cor-
respond to a number of diverse objectives, such as
maximizing energy or metabolite production (20). How-
ever, regardless of the objective function the optimal
solution will lie within the feasible set that is defined by
the physicochemical constraints placed on the system.

The utilization of linear programming to examine
metabolic networks defines the optimal flux vector that
maximizes (or minimizes) an objective function and
satisfies the entire set of constraints. The utilization of
design related objectives (such as maximizing the pro-
duction of an amino acid) can be used to guide genetic
engineering of a strain for metabolite overproduction.
Herein, we have employed a physiologically realistic
objective, the maximization of the growth flux. We have
assumed that the cell has evolved the regulatory mech-
anisms to operate optimally within the feasible set. The
feasible set defines the capabilities of the metabolic
network, and all metabolic flux vectors within the feasible
set satisfy the imposed physicochemical constraints.
Therefore, theoretically all flux vectors within the feasible
set can be reached by adjusting the enzyme kinetic
parameters and gene regulation. The enzyme kinetics
and gene regulation constraints on the metabolic system
will be referred to as system specific constraints. We
assume that the cell has found the optimal set of system
specific constraints through the course of evolution, and
we attempt to find the same solution using linear
programming. The assumption has been experimentally
examined under a limited number of conditions, and
under defined conditions with a single carbon source, the
experimental data is consistent with the optimal utiliza-
tion of the metabolic network (27).

Phenotype Phase Plane Analysis
Flux balance analysis can be used to examine the

metabolic network in detail. Optimal solutions to the
linear programming problem will then lie on a vertex of
the feasible set, which is a polyhedron (38). All the
metabolic flux vectors (or metabolic phenotypes) attain-
able from a defined metabolic genotype are mathemati-
cally confined to the feasible set. Linear programming
was used to search through the feasible set for a solution
that maximizes the growth flux. Experimental data for
the growth of E. coli under nutritionally rich growth
conditions (i.e., cell is not starved for phosphate, nitrogen,

∑
i

m
di ‚ Xi98

vgrowth
Biomass

Maximize/Minimize Z ) cjvj

subject to Sijvj ) 0, Rj e vj e âj (5)
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etc.) is consistent with the optimal utilization of the
metabolic network (27); thus, defining the growth flux
as the objective function produces physiologically mean-
ingful results. However, the optimal flux distribution is
only meaningful when interpreted in terms of the specific
environmental conditions. Therefore, phenotype phase
planes (39) have been developed to define the range of
optimal flux vectors and how the optimal flux vector is
dependent on the environmental conditions.

The methodology for defining PhPPs has been de-
scribed (39). We will now briefly describe the construction
of PhPPs. Two metabolic fluxes can form two axes on an
(x,y)-plane (these metabolic fluxes were two unit vectors
in Rn). The optimal metabolic flux distribution is calcu-
lated for all points in this plane. In other words, the
maximum value of the objective function is found as the
position of the hyperplanes that bound the feasible set
in the respective directions is moved. It has been deter-
mined that there are a finite number of fundamentally
different optimal metabolic flux distributions (or basis
solutions in linear programming terminology) present in
such a plane. The demarcations on the phase plane were
defined by a shadow price (LP dual variable) analysis
(40). This procedure leads to the definition of distinct
regions, or “phases”, in the plane, in which the optimal
use of the metabolic network is fundamentally different,
corresponding to different optimal phenotypes.

Robustness Analysis
Robustness, defined here with respect to metabolic

networks, is a measure of the change in the maximal flux
of the objective function (the growth flux was defined as
the objective) when the optimal flux through any par-
ticular metabolic reaction is changed. The robustness
characteristics of the metabolic network were determined
by calculating the optimal flux vector so as to maximize
the growth flux (with only external flux constraints), this
flux was called the in silico wildtype flux. Then the flux
through the reaction in question was reduced from 100%
to 0% of the in silico wildtype flux and the objective
function was calculated. Additionally, the in silico wild-
type flux was increased from the wildtype value and the
upper bound on increasing the flux level was the maximal
allowable flux in the reaction or the flux level for which
the objective function was reduced to zero. The calcula-
tions were for a simulated aerobic batch culture in
glucose minimal media.

The FBA framework was used to address the systemic
effect on the metabolic network of increased and de-
creased (with respect to the in silico wildtype) metabolic
flux. Herein, we quantified the robustness of the meta-
bolic network to flux changes in the essential enzymatic
reactions. The essential enzymes (for growth on glucose
minimal media) were previously identified through an
in silico analysis (24). Seven enzymatic reactions in
central metabolism (Figure 1) were found to be es-
sential: the transketolase (TKT), ribose-5-phosphate
isomerase (RPI), two enzymes (GAP, PGK) in the 3-car-
bon stage of glycolysis (3CG), and the first three enzymes
(GLT, ACN, ICD) of the TCA cycle. Below, the robustness
characteristics of the metabolic network with respect to
alterations of the flux levels of these essential metabolic
reactions will be investigated. We will utilize phenotype
phase planes (PhPPs) to define points where the optimal
utilization of the metabolic network changes due to
capacity constraints on the essential enzymatic reactions.

Transketolase. The transketolase (TKT) catalyzes an
essential enzymatic reaction in the pentose phosphate
pathway (PPP) (41). However, tkt mutant strains have

been shown to grow on glucose minimal media with low
TKT residual activity (3% of wildtype) (42, 43). The
ability of the metabolic network to support growth with
a large reduction in TKT flux was investigated in silico
by continuously restricting the metabolic flux in the TKT
reactions. As the maximum allowable flux through the
TKT reactions was reduced from the in silico wildtype,
it was determined that the ability of the metabolic
network to support growth was virtually unchanged for
enzymatic fluxes as low as 15% of the in silico wildtype
(Figure 2). The response to decreased TKT metabolic flux
was found to have two qualitatively different regions. The
regions were identified in the PhPP (Figure 3).

The PhPP describing the changes in the metabolic
pathway utilization as a function of the TKT flux and
the glucose uptake rate was calculated (Figure 3). The
optimal relation between the glucose uptake rate and the
TKT flux was determined from the PhPP (Figure 3). It
was determined that there were two qualitatively differ-
ent regions of metabolic pathway utilization for TKT
fluxes lower than optimal, and these regions were defined
as A and B (as shown in Figure 3). Furthermore, there
were determined to be six qualitatively different regions
for TKT fluxes greater than optimal, and these regions
were defined as 1-6 (as shown in Figure 3). The maximal
growth flux (normalized to the in silico wildtype) was
calculated for all TKT fluxes from zero to the maximum
allowable flux (the glucose uptake exchange flux was
constrained to 10 mmol g-DW-1 h-1) that still permits
cellular growth, and the results are shown in Figure 2.

In region A (above 15% of the in silico wildtype enzyme
flux), the optimal value of the growth flux was hardly
changed, and at the demarcation between regions A and
B, the growth flux was decreased to 99.2% of the in silico
wildtype. However, to cope with the decreased TKT
metabolic flux carrying capacity, shifts in the metabolic
pathway utilization occurred (Figure 4). The redox po-
tential (NADPH) requirement for biosynthetic demands
was achieved by a flux redistribution that resulted in the
utilization of the transhydrogenase that converted NADH
(produced from an increased TCA cycle flux, Figure 4C)
into NADPH. The flux diverted from the PPP (Figure 3B)
resulted in increased glycolytic fluxes, in particular the
pyruvate kinase and the phosphoglucoisomerase fluxes
(Figure 3A). In this region, the optimal growth flux was
not sensitive to changes in the TKT flux. However, the
optimal flux in several metabolic processes were sensitive
to the TKT flux in this region (transhydrogenase, PYK,
PGI, TCA cycle flux)

In the second region (region B) of reduced TKT flux
(enzyme flux less than 15% of the in silico wildtype), the
metabolic network was limited in the ability to produce
the essential biosynthetic precursor, erythrose 4-phos-
phate. In this region, the optimal growth flux was
sensitive to the flux level in the TKT reaction. The
metabolic fluxes in this region are not shown in Figure
4 because alternate optimal solutions exist. Cellular
growth is solely limited by the availability of a single
biosynthetic precursor, the excess glucose can be con-
verted to any of the metabolic byproducts with the same
value of the objective function. Furthermore, the excess
high-energy phosphate bonds can be eliminated in any
futile cycle; thus alternate optimal solutions exist.

The effect on the metabolic network due to TKT fluxes
increased beyond the optimal flux for growth was also
examined. An increase in metabolic flux may result from
the overexpression of the respective gene, and the robust-
ness analysis can be used to identify the constraints on
flux changes due to the integrated metabolic network.
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The optimal growth flux as a function of the flux in the
TKT reaction was calculated (Figure 2, insert). The
metabolic flux was continuously increased in silico from
the in silico wildtype value to the maximum flux that
permits growth. Six qualitatively different patterns of
metabolic pathway utilization (numbered 1-6 in Figure
3) were observed when the TKT flux was increased
beyond the in silico wildtype.

The region 1 of Figure 3 the optimal metabolic flux
vector was characterized by an increased PPP flux, an
active transhydrogenase reaction, a decreased PYK flux,
and a decreased TCA cycle flux. In region 2 the TCA cycle
flux was further decreased while the PPP flux was
increased, and optimally, the glyoxylate bypass was
utilized to replenish the TCA cycle biosynthetic precur-
sors thus reducing the PPC flux (Figure 4). At the
demarcation between regions 2 and 3, the TCA cycle was
shut off and functioned to produce the biosynthetic

precursors, rather than redox potential. Optimally, in
region 3, the glucokinase reaction was operative in
glucose utilization, and this allowed for a more efficient
flow of the metabolites into the PPP due to the increased
TKT flux. Regions 4 and 5 were similar with respect to
the metabolic pathway utilization, the glyoxylate bypass
was no longer utilized in the optimal solution and the
PFL reaction optimally carried a small flux. Finally, in
region 6, redox potential was overproduced. This region
was characterized by alternate optimal solutions to
eliminate the excess high-energy phosphate bonds. How-
ever, there were no metabolic byproducts produced (other
than CO2); this was because many metabolites were still
desirable to the cell (as identified through a shadow price
analysis (40)). In this region, the optimal oxygen uptake
rate was very high (∼60 mmol g-DW-1 h-1) and it is likely
that the maximal TKT flux is much lower due to other
constraints on the metabolic network that were not

Figure 1. The central metabolic pathway reactions. Reactions: aceA, isocitrate lyase; aceB, malate synthase; aceEF, pyruvate
dehydrogenase; ack, acetate kinase; acn, aconitase; adh, acetaldehyde dehydrogenase; eno, enolase; fba, fructose-1,6-bisphosphatate
aldolase; fbp, fructose-1,6-bisphosphatase; frd, fumurate reductase; fum, fumarase; gap, glyceraldehyde-3-phosphate dehydrogenase;
glk, glucokinase; glt, citrate synthase; gnd, 6-phosphogluconate dehydrogenase; gpm, phosphoglycerate mutase; icd, isocitrate
dehydrogenase; ldh, lactate dehydrogenase; mae, malic enzyme; mdh, malate dehydrogenase; pck, phosphoenolpyruvate carboxykinase;
pfk, phosphofructokinase; pfl, pyruvate formate lyase; pgi, phosphoglucose isomerase; pgk, phosphoglycerate kinase; pgl, 6-phos-
phogluconolactonase; ppc, phosphoenolpyruvate carboxylase; pps, phosphoenolpyruvate synthase; pts, phosphotransferase system;
pyk, pyruvate kinase; rpe, ribulose phosphate 3-epimerase; rpi, ribose-5-phosphate isomerase; sdh, succinate dehydrogenase; sfc,
malic enzyme; sucAB, 2-ketoglutarate dehyrogenase; sucCD, succinyl-CoA synthetase; tal, transaldolase; tkt, transketolase; tpi,
triosphosphate isomerase; zwf, glucose 6-phosphate-1-dehydrogenase. Metabolites: 2PG, 2-phosphoglycerate; 3PG, 3-phosphoglycerate;
6PG, D-6-phosphate-gluconate; 6PGA, D-6-phosphate-glucono-δ-lactone; AC, acetate; AcCoA, Acetyl-CoA; R-KG, R -ketoglutarate;
CIT, citrate; DHAP, dihydroxyacetone phosphate; DPG, 1,3-bis-phosphoglycerate; E4P, erythrose 4-phosphate; ETH, ethanol; F6P,
fructose 6-phosphate; FDP, fructose 1,6-diphosphate; FOR, formate; FUM, fumarate; G6P, glucose 6-phosphate; GA3P, glyceraldehyde
3-phosphate; ICIT, isocitrate; LAC, lactate; MAL, malate; PEP, phosphoenolpyruvate; PYR, pyruvate; R5P, ribose 5-phosphate; Ru5P,
ribulose 5-phosphate; S7P, sedo-heptulose; SUCC, succinate; SuccCoA, succinyl CoA; X5P, dihydroxyacetone phosphate.
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included in the analysis (such as oxygen mass transfer
limitations).

Ribose-5-Phosphate Isomerase. The ribose-5-phos-
phate isomerase reaction (RPI) also catalyzes an essential
reaction in the PPP (41) for growth in glucose minimal

media. Similarly to tkt mutants, rpi mutants have been
shown to grow with enzymatic activity much less than
that of the wildtype. For example, Skinner and Cooper
have isolated a strain with RPI activity below 10% of the
wildtype, and this strain was able to grow (44). As the

Figure 2. Robustness diagrams. The effect of altered metabolic flux in the essential metabolic reactions on the normalized growth
flux is illustrated. The in silico wildtype flux is defined as 100%. See the text for a complete discussion.

Figure 3. The glucose uptake rate (mmol ‚ g-DW-1 ‚ h-1)-transketolase flux (substrates converted ‚ g-DW-1 ‚ h-1) phenotype phase
plane. Exchange flux constraints were defined as discussed in the text. The regions are numbered and lettered. The numbered
regions correspond to TKT fluxes that are increased relative to the optimal value. The optimal relation is the thick demarcation line.
The lettered regions identify TKT flux reductions below the optimal relation. The metabolic fluxes along the thick vertical line
(glucose uptake rate ) 10 mmol ‚ g-DW-1 ‚ h-1) are shown in Figure 4.
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maximum allowable RPI flux was reduced from the in
silico wildtype, it was determined that the ability of the
metabolic network to support growth was virtually
unchanged for enzymatic fluxes as low as 28% of the in
silico wildtype (Figure 2). The RPI-glucose uptake rate
PhPP was calculated to characterize the effect of altered
RPI metabolic fluxes (not shown, similar to Figure 3).
The qualitative effect of reduced flux in the RPI reaction
from the in silico wildtype was investigated with FBA,
and the holistic metabolic response to decreased and
increased RPI fluxes was similar to the TKT results
because the effect on the PPP was similar.

3-Carbon Glycolysis. The 3-carbon glycolytic reac-
tions that the in silico analysis predicted to be essential
have been shown experimentally to be required for the
growth of E. coli on a glucose minimal media (GAP, PGK)
(41). The glycolytic essential reactions were subjected to
a robustness analysis to investigate the optimal systemic
effect of flux alteration. The ability of the metabolic
network to support growth with a reduction in 3CG flux
was investigated in silico by continuously restricting the
3CG flux. As the allowable flux through the 3CG reac-

tions was reduced from the in silico wildtype, it was
determined that the sensitivity of the growth flux was
increased compared to the other essential reactions.
When the 3CG flux was reduced below about 70% of the
in silico wildtype, the growth flux was sensitive to the
3CG flux (Figure 2). Furthermore, the 3CG fluxes could
only be increased to 110% of the in silico wildtype before
severe limitations in the growth flux were encountered
(Figure 2). We have investigated the metabolic response
to 3CG flux level alterations by a phenotype phase plane
analysis (Figure 5).

The PhPP describing the changes in the metabolic
pathway utilization as a function of the 3CG flux and
the glucose uptake rate was calculated (Figure 5). The
optimal relation between the glucose uptake rate and the
3CG flux was determined from the PhPP (Figure 5). It
was determined that there were six qualitatively differ-
ent regions of metabolic pathway utilization for 3CG
fluxes lower than optimal, and these regions were defined
as A-F (as shown in Figure 5). Furthermore, there were
determined to be two qualitatively different regions for
3CG fluxes greater than optimal, and these regions were

Figure 4. Optimal intracellular fluxes in the central metabolic pathways (substrates converted ‚ g-DW-1 ‚ h-1) as a function of the
TKT metabolic flux constraint (substrates converted ‚ g-DW-1 ‚ h-1). The glucose uptake rate was constrained to 10 mmol ‚ g-DW-1

‚ h-1. (A) Glycolytic fluxes. (B) Pentose phosphate pathway fluxes. (C) TCA cycle fluxes.
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defined as 1-2 (as shown in Figure 5). The maximal
growth flux (normalized to the in silico wildtype) was
calculated for all 3CG fluxes from zero to the maximum
allowable flux (the glucose uptake exchange flux was
constrained to 10 mmol g-DW-1 h-1) that still permits
cellular growth, and the results are shown in Figure 2.

The optimal relation between the glucose uptake and
the 3CG flux was calculated (Figure 5). The sensitivity
of other optimal fluxes in the metabolic network upon
the reduction of the 3CG flux was examined (Figure 6).
With 3CG flux reduction just below the optimal value,
the optimal metabolic network operation was character-
ized by region A (Figure 5). In region A, the 3CG flux
reduction led to increased PPP fluxes and the transhy-
drogenase was used (Figure 6B); additionally, the TCA
cycle flux was reduced (Figure 6C). The reduced 3CG flux
also led to the reduction of the PYK flux, which was
optimally completely inactivated at the demarcation
between regions A and B (Figure 6A). In region B, the
glyoxylate bypass was optimally utilized and the TCA
cycle fluxes were further reduced. At the demarcation
between region B and C, the TCA cycle no longer
operated cyclically but rather served to generate the
biosynthetic precursors. In region C, glucokinase was
included in the optimal flux vector, the inclusion of the
glucokinase decoupled the phosphoenolpyruvate to pyru-
vate biochemical conversion and the uptake of glucose,
thus allowing for the 3CG flux to be decreased and with
little effect on the maximal growth flux. The growth flux
at the demarcation between region C and D was 98% of
the in silico wildtype (Figure 2).

Regions D and E were very similar with respect to the
optimal metabolic flux vector. In these regions, the pyru-
vate-formate lyase was optimally active and the glyoxyl-
ate bypass was no longer included in the optimal flux
vector. Additionally, in regions D and E, the growth flux
was more sensitive (compared to regions A-C) to the 3CG
flux, and at the demarcation between regions E and F
the maximal growth flux was 95% of the in silico wild-
type.

In the final region of reduced 3CG flux (region F, met-
abolic flux less than 63% of the in silico wildtype), the

metabolic network was limited in the ability to produce
the essential biosynthetic precursors below the block in
the metabolic network. In this region, the optimal growth
flux was sensitive to the 3CG flux, and the maximal
growth flux linearly decreased to zero as the 3CG flux
was reduced to zero from the region E,F boundary. The
metabolic fluxes in this region are not shown in Figure
6 because alternate optimal solutions exist. Cellular
growth is limited by the availability of the biosynthetic
precursors after the metabolic blockage, and the diversion
of the flux from glycolysis to the PPP resulted in excess
high-energy phosphate bonds and redox potential. The
growth flux in region F is dependent upon increased oxy-
gen availability to eliminate the excess redox potential.
An additional constraint was imposed on the metabolic
network, i.e., the oxygen uptake was constrained below
a physiologically realistic value of 20 mmol g-DW-1 h-1,
and the feasible set did not contain a growth flux for 3CG
fluxes below about 40% of the in silico wildtype (not
shown). Thus, the partial inhibition of the 3CG fluxes
can theoretically prevent the growth of E. coli; however,
growth can be maintained with reduced glucose uptake
rates.

The holistic effect of increased 3CG flux on the meta-
bolic networks capability to support cellular growth was
assessed with FBA. The optimal growth flux as a function
of the flux in the 3CG flux was calculated (Figure 2). The
metabolic flux was continuously increased in silico from
the in silico wildtype value to the maximum flux that
permits growth, and two qualitatively different metabolic
flux vectors (numbered 1 and 2 in Figure 5) were
observed.

In region 1 (Figure 5), the optimal metabolic flux vector
was characterized by a decreased pentose phosphate
pathway (PPP), an active transhydrogenase reaction, an
increased PYK flux, and an increased TCA cycle flux.
However, region 1 only extends to a 3CG flux of 110% of
the in silico wildtype (with a glucose uptake of 10 mmol
g-DW-1 h-1), and region 2 of Figure 5 was characterized
by alternate optimal flux distributions. The metabolic
network was limited in the ability to produce the es-
sential biosynthetic precursors before the effected reac-

Figure 5. The glucose uptake rate (mmol ‚ g-DW-1 ‚ h-1)-3-carbon glycolytic flux (substrates converted ‚ g-DW-1 ‚ h-1) phenotype
phase plane. Exchange flux constraints were defined as discussed in the text. The regions are numbered and lettered. The numbered
regions correspond to 3CG fluxes that are increased relative to the optimal value. The optimal relation is the thick demarcation line.
The lettered regions identify 3CG flux reductions below the optimal relation. The metabolic fluxes along the thick line (glucose
uptake rate ) 10 mmol ‚ g-DW-1 ‚ h-1) are shown in Figure 6.
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tions of 3-carbon glycolysis. In this region, the optimal
growth flux was sensitive to the 3CG flux. The metabolic
fluxes in this region are not shown in Figure 6 because
alternate optimal solutions exist. The excess pyruvate
produced by the elevated 3CG flux can be converted to
any of the metabolic byproducts with the same value of
the objective function. Furthermore, the excess high-
energy phosphate bonds can be eliminated in any futile
cycle, and thus alternate optimal solutions exist.

TCA Cycle. The initial three fluxes of the TCA cycle
were determined to be essential. The deletion of any of
these enzymatic activities resulted in a glutamate re-
quirement. This requirement has been shown experi-
mentally (45). The in silico robustness analysis was
performed to assess the effect of decreased (and in-
creased) flux entering the TCA cycle (Figures 2, 7, and
8). The ability of the metabolic network to support growth
with a reduction in the TCA cycle flux was investigated
in silico by continuously restricting the citrate synthase
flux, which we will refer to as the TCA cycle flux. As the
TCA cycle flux constraint was reduced from the in silico
wildtype, it was determined that the ability of the

metabolic network to support growth was not sensitive
to the TCA cycle flux above 18% of the in silico wildtype.
Furthermore, the TCA cycle flux could be increased to
about 160% of the in silico wildtype before severe
limitations in the growth flux were encountered (Figure
2). We have investigated the metabolic response to TCA
cycle flux level alterations by a phenotype phase plane
analysis (Figure 7).

The PhPP describing the changes in the metabolic
pathway utilization as a function of the TCA cycle flux
and the glucose uptake rate was calculated (Figure 7).
The optimal relation between the glucose uptake rate and
the TCA cycle flux was determined from the PhPP
(Figure 7). It was determined that there were four
qualitatively different regions of optimal metabolic path-
way utilization for TCA cycle fluxes lower than optimal,
and these regions were defined as A-D (as shown in
Figure 7). Furthermore, there were determined to be four
qualitatively different regions for TCA cycle fluxes greater
than optimal, and these regions were defined as 1-4 (as
shown in Figure 7). The maximal growth flux (normalized
to the in silico wildtype) was calculated for all TCA cycle

Figure 6. Optimal intracellular fluxes (substrates converted ‚ g-DW-1 ‚ h-1) in the central metabolic pathways as a function of the
3CG metabolic flux constraint (substrates converted ‚ g-DW-1 ‚ h-1). The glucose uptake rate was constrained to 10 mmol g-DW-1

h-1. (A) Glycolytic fluxes. (B) Pentose phosphate pathway fluxes. (C) TCA cycle fluxes.
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fluxes from zero to the maximum allowable flux (The
glucose uptake exchange flux was constrained to 10 mmol
g-DW-1 h-1) that still permits cellular growth, and the
results are shown in Figure 2.

The optimal relation between the glucose uptake and
the TCA cycle flux was calculated, and the sensitivity of
the optimal fluxes in central metabolism to the TCA cycle
flux was examined (Figure 8). Region A defines the
optimal set of metabolic reactions that are utilized with
a reduction of the TCA cycle flux below the optimal value
(Figure 7). In region A, the reduction of the TCA cycle
flux led to increased PPP fluxes and the transhydroge-
nase was used; additionally, the glycolytic flux was
decreased. The reduced TCA cycle flux led to the reduc-
tion of the PYK flux, which was optimally completely
inactivated at the demarcation between regions A and
B. In region B, the glyoxylate bypass was optimally
utilized and the glycolytic fluxes were further reduced.
At the demarcation between region B and C, the TCA
cycle fluxes were reduced to the point that the TCA cycle
no longer operated cyclically but rather served to gener-
ate the biosynthetic precursors. In region C, glucokinase
was included in the optimal flux vector, and the inclusion
of the glucokinase decoupled the phosphoenolpyruvate
to pyruvate biochemical conversion and the uptake of
glucose. The growth flux at the demarcation between
region C and D was 98% of the in silico wildtype (Figure
2) and the TCA cycle flux was 18% of the in silico
wildtype TCA cycle flux.

In the final region of reduced TCA cycle fluxes (meta-
bolic flux less than 18% of the in silico wildtype), the
metabolic network was limited in the ability to produce
R-ketoglutarate, an essential biosynthetic precursor. In
this region, the optimal growth flux was sensitive to the
TCA cycle flux, and the characteristic behavior was
similar to region F of the 3CG-glucose uptake rate PhPP
(Figure 5) that was discussed above.

The holistic effect of increased TCA cycle flux on the
metabolic networks’ capability to support cellular growth
was assessed with FBA. The optimal growth flux as a
function of the flux in the TCA cycle flux was calculated
(Figure 2). The metabolic flux was continuously increased

in silico from the in silico wildtype value to the maximum
flux that permits growth, and four qualitatively different
metabolic flux vectors (numbered 1-4 in Figure 7) were
observed.

The region 1 of Figure 7 the optimal metabolic flux
vector was characterized by an active transhydrogenase
reaction, an increased PYK flux, an increased glycolytic
flux, and a decreased PPP (which was optimally inacti-
vated at the demarcation between regions 1 and 2).
Regions 2 and 3 are very similar with respect to the set
of metabolic reactions that are optimally utilized, and in
these regions, the PPP is optimally inactivated. At the
demarcation between regions 3 and 4, the maximal
growth flux was about 95% of the in silico wildtype and
the TCA cycle flux was increased to approximately 160%
of the in silico wildtype. With TCA cycle flux increases
beyond region 3, region 4 is encountered (Figure 7).
Region 4 was characterized by alternate optimal flux
distributions. The metabolic network was limited in the
ability to produce the essential glycolytic and PPP
biosynthetic precursors. In this region, the optimal
growth flux was sensitive to the TCA cycle flux, and the
metabolic fluxes in this region are not shown in Figure
8 because alternate optimal solutions exist.

Discussion
We have illustrated, with the complete E. coli meta-

bolic network, how optimal metabolic phenotypes (flux
vectors) and shifts in metabolic behavior can be analyzed
and interpreted in silico. From the fundamental physi-
cochemical constraints on the metabolic network, the
feasible set that identifies the capabilities of the meta-
bolic network was identified. Subsequently, a linear
optimization routine was utilized to search the feasible
set for a flux vector that maximizes a given objective func-
tion. Given the complexity associated with developing
complete dynamic modeling of cellular processes, the
constraining approach, as discussed herein, is a particu-
larly useful alternative approach to metabolic systems
analysis. The results presented herein are of fundamental
interest for several reasons. First, the ability to define
essential genes under various conditions will have many

Figure 7. The glucose uptake rate (mmol ‚ g-DW-1 ‚ h-1)-TCA cycle flux (substrates converted ‚ g-DW-1 ‚ h-1) phenotype phase
plane. Exchange flux constraints were defined as discussed in the text. The regions are numbered and lettered. The numbered
regions correspond to TCA cycle fluxes that are increased relative to the optimal value. The optimal relation is the thick demarcation
line. The lettered regions identify TCA cycle flux reductions below the optimal relation. The metabolic fluxes along the thick line
(glucose uptake rate ) 10 mmol ‚ g-DW-1 ‚ h-1) are shown in Figure 8.
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practical applications. Second, the results presented
discussed the sensitivity of the objective function to
specific fluxes in the metabolic network. Finally, the
results demonstrate the potential capabilities of in silico
analysis of cellular systems. Understanding the relation
between individual fluxes and the holistic function of the
metabolic network is essential to successfully metabolic
engineering a living system, and FBA provides a meth-
odology that can be used to direct the metabolic engineer.

First, we should address the assumptions associated
with the utilization of linear optimization to identify the
optimal flux vector. The metabolic constraining formal-
ism that we have discussed is based on the fundamental
physicochemical constraints that all cells must abide to.
Within the set of constraints, the cell will choose a flux
vector for which to operate. We have attempted to find
the same flux vector by employing linear optimization,
and the assumption is that the cell has evolved the regu-
latory mechanisms to find the optimal solution within
the physicochemical constraints to maximize its survival.
We have mathematically represented survival as cellular
growth. On the basis of comparisons of the linear

optimization results and experimental data, the assump-
tion appears to be valid under the tested conditions (27).
However, currently, the number of situations for which
the validity of the assumption has been addressed is
limited. Therefore, further experimental validation is in
order. It should be noted that, even if the assumption of
optimal growth proves correct for wildtype strains, it is
not clear if we should expect that an engineered strain
will behave in an optimal manner. Therefore, the opti-
mization results may only provide an upper bound on the
expected behavior of engineered strains.

The identification of the essential gene products in a
metabolic network is of fundamental interest (46, 47).
The metabolic constraining formalism that was described
here provides an efficient method to study the conse-
quences of alterations in the genotype and to gain insight
into the genotype-phenotype relation. The study of the
removal of individual metabolic enzymes in the central
metabolic pathways demonstrated fundamental redun-
dancy properties of the E. coli metabolic genotype and
the existence of relatively few critical gene products.
Seven metabolic reactions were determined to be ess-

Figure 8. Optimal intracellular fluxes (substrates converted ‚ g-DW-1 ‚ h-1) in the central metabolic pathways as a function of the
TCA cycle metabolic flux constraint (substrates converted ‚ g-DW-1 ‚ h-1). The glucose uptake rate was constrained to 10 mmol
g-DW-1 h-1. (A) Glycolytic fluxes. (B) Pentose phosphate pathway fluxes. (C) TCA cycle fluxes.
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ential in the metabolic network. Of these seven reactions,
one set of three forms a linear reaction series and another
set of two forms another linear reaction series; therefore,
the effect of deleting any of the reactions in the linear
set is equivalent. Thus, there were basically four different
metabolic fluxes that were essential: two in the PPP, the
3-carbon stage of glycolysis, and the first three reactions
of the TCA cycle. It was shown that there are regions
where the ability of the metabolic network to support
growth was not affected by the altered flux levels in the
essential enzymatic reactions. This metabolic robustness
was due to the capability of the metabolic network to shift
the production of redox potential and high-energy phos-
phate bonds. However, the point where the metabolic
network was unable to support growth was quantitatively
derived in silico. At this point, the metabolic network was
limited in the ability to produce biosynthetic precursors.
In the biosynthetic precursor limited region, the avail-
ability of redox potential and high-energy phosphate
bonds did not limit the growth capability of the cell.

The robustness analysis presented herein is essentially
a sensitivity analysis. The sensitivity of the objective
function to changes in the optimal flux vector was ad-
dressed. A constraint was added to the metabolic net-
work, thus altering a single metabolic flux, and a new
optimal flux vector was calculated. The relation between
the additional constraint and the objective function was
examined to investigate the robustness in the system
with respect to the essential enzymatic reactions. Fur-
thermore, the relation between the additional constraint
and optimal flux vector was also examined. The results
of the sensitivity analysis can be used to interpret the
optimal metabolic fluxes and their relation to in vivo
metabolic fluxes. For example, metabolic fluxes for which
the objective function is highly sensitive are likely to
obtain in vivo values that are consistent with the optimal
values. Furthermore, metabolic fluxes to which the
objective is not sensitive may be able to take on flux
values in a large range with very little effect on the
optimal solution. Additionally, other fluxes in the meta-
bolic network that are sensitive to a given metabolic flux
may provide an indication of the accuracy of the optimal
predictions. For example, the TCA cycle flux was reduced
to approximately 18% of the in silico wildtype with little
effect on the objective function; however, the PPP fluxes
were three times the in silico wildtype, fluxes much
higher than experimental data indicates.

Understanding the metabolic fluxes and their control
is essential to the ability to “design” metabolic networks
for the production commodity chemicals (i.e., antibiotics,
vitamins, amino acids, etc). Using flux balance analysis
the complete range of metabolic phenotypes can be exam-
ined under defined environmental and genetic conditions
through the use of phenotypic phase planes (PhPP). For
the E. coli network PhPPs were generated for growth on
glucose minimal media spanning the uptake rate of the
carbon source and an intracellular metabolic flux. There-
fore, the PhPP formalism has provided an efficient meth-
odology for examining the consequence of altered fluxes
within the cell. Therefore, bioinformatically based models
will undoubtedly have a major impact on the develop-
ment of metabolic engineering (4, 5). Herein, we have
investigated the effect of altered metabolic flux levels on
the maximal growth flux, thus quantifying the relation
between altered flux levels and optimal cellular growth.
Furthermore, by examining the entire set of constraints
on the metabolic network, constraints on metabolic flux
alterations can be identified.

FBA incorporates no information on enzyme kinetics
or gene regulation, thus limiting insight into dynamic
responses. From flux balance analysis it is possible to
realize some of the fundamental constraints that meta-
bolic systems are faced with and define the feasible set
that contains all admissible steady-state flux vectors. As
in vivo reaction dynamics is further understood, the abil-
ity to predict dynamic responses of metabolic networks
to environmental and genetic perturbations using dy-
namic modeling approaches will become more feasible.
In general regulatory schemes and reaction dynamics will
serve to further constrain metabolic behavior to operate
in confined subspaces of the feasible set. Identifying these
regions from both the theoretical and experimental side
will be a challenge for the future.

A number of experimental technologies have now made
the holistic study of biological systems feasible. The abil-
ity to assimilate DNA chip-based and protein expression
technologies providing genome-scale information with
computational methods for metabolic network analysis
will become important in advancing the study of meta-
bolic physiology and the practice of metabolic engineer-
ing. Currently the interpretation of high-throughput ex-
perimental information on systemic behavior is limited
by a lack of analysis capabilities. Can systems-based
quantitative in silico approaches such as flux balance be
used to assist in understanding this flood of data? This
question will need to be answered as interest builds in
the genomics community for quantitative systems analy-
sis.

The analysis of the metabolic phenotype-genotype
relation using the bioinformatically based in silico meta-
bolic genotype of E. coli can serve as a basis for the
construction of parallel in silico representations of other
single-cell organisms. Thus, the results presented are
particularly relevant with the current emphasis on
genome sequencing. Utilizing the techniques described
herein, information can be gained regarding the meta-
bolic physiology of a cell with relatively little experimen-
tal biochemical information on the cell of interest.
However, this analysis should be considered a single step
toward the integrative analysis of bioinformatic data-
bases to predict and understand cellular function based
on the underlying genetic content. Continued prediction
and experimental verification will be an integral part of
the further development of in silico strains and their use
to represent their in vivo counterparts.
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