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Abstract 

Synthesis of data into formal models of cellular function is rapidly becoming a necessary industry. The complexity of the interactions among cellular constituents and the quantity of data about these interactions hinders the ability to predict how cells will respond to perturbation and how they can be engineered for industrial or medical purposes. Models provide a systematic framework to describe and analyze these complex systems. In the last few years, models have begun to have an impact on mainstream biology by creating deeper insight into the design rules of cellular signal processing, providing a basis for rational engineering of cells, and for resolving debates about the root causes of certain cellular behaviors. This review covers some of the recent work and challenges in developing these “synthetic cell” models and their growing practical applications.

Introduction 

Molecular biology has entered a stage of maturity that requires its transformation into an engineering discipline. The wealth of data about cellular components and their interactions demands a synthesis into an understanding of cellular behavior sufficient for prediction, control and redesign. Diagrams tracing all the interactions, activities, locations, and expression times of the involved proteins, metabolites, and nucleic acids have become so dense with lines and annotations that reasoning about their functions has become almost impossible. 

Given the complexity and quantity of this information, some believe that developing a rational engineering framework for cellular systems may be untenable for the present. An entire industry in “irrational” engineering of cells has grown up using combinatorial methods in chemistry, genetic engineering and high-throughput screening technology. This approach has proven powerful in certain cases of strain improvement, drug discovery, and natural product synthesis [1-5]. What is gained in expediency, however, is often lost in insight. It is often unclear why the found pathways and chemicals produce the effects they do and it is difficult to generalize these results to other systems. Further, the more complicated the target function (e.g. the biosynthetic route to a product or the inhibition, without side-effect, of pathways associated with a disease), the less likely a solution will be found using combinatorial or forced evolutionary methods. Both the drive for understanding cellular function with the attendant ability to accurately diagnose cellular state, and the economic pull for rational design of metabolic/biosynthetic pathways and molecular strategies for disease treatment call for the development of computable models.

Models summarize current knowledge and hypotheses about missing information. Depending on the amount of data available and the questions being addressed models are more or less detailed and abstract. Models containing detailed statements about a process are easier to falsify than abstract models and require more physical detail. A validated physical model is the most predictive and useful for understanding points of control with cellular networks and for designing new functions within them. It is also the most computable type of model.

There have been a number of reviews of cellular model simulation and engineering published in the two years, including one in this journal (see, for example [6-14]). Many of these provide excellent detailed descriptions of various modeling strategies and applications. Most have focused on metabolism or gene expression as these have the most data and immediate economic impact. A dedicated review of signal transduction models is lacking largely due to the paucity of such models. They do exist, however, and their small number attests to the difficulty in analysis of this type of pathway.  The goal of this capsule is to bring together the various approaches to modeling biological pathways with a focus on signal transduction and thus to provide a touch-point summary of the process and application of cellular model building and analysis. 

From Data to Models 

The precursor to any model is data. The minimal basis of a cellular network model is a list of the molecular players and a list of the “influences” of one set of players on another or on a lumped cell behavior (such as growth). Molecular players and their interactions have traditionally been discovered through painstaking genetic and biochemical experiment. Technologies like yeast two-hybrid, co-immunoprecipitation, surface plasmon resonance, and fluorescence resonance energy transfer (FRET) experiments report on direct interactions between pairs of molecules. Other techniques yield more indirect measures of the interactions among molecules.

Recent advances in high-throughput molecular biology and measurement have led to maps of molecular networks that are stunning in their complexity. For example, there have been a number of large-scale yeast two-hybrid screens for detection of protein-protein interactions in organisms ranging from the T7 phage[17] to C. elegans[18]. Here the molecular players are determined either from direct experiment or are predictions from genome annotation tools. The largest scale studies of this sort to date are in Saccharomyces cerevisiae. Uetz et al. [19] found 957 interactions among 1004 proteins. Ito et al. [20] found 4,549 two-hybrid interactions among 3,278 proteins. Interestingly, the two studies found few overlapping interactions. The experimental protocols used by each differed in a number of ways and the screening was far from saturated. In addition, two-hybrid methods have substantial rates of false positives and false negatives. 

Newer experimental technologies have been developed for indirectly deducing interactions among molecules. These include: the multiple alignment of DNA regions upstream of genes clustered by their expression patterns[21], statistical analysis of concomitant variation and temporal sequencing[22], and perturbation/response modeling[23-27]. By whatever method interaction among components are deduced, direct or indirect, the results are reported in the literature in nonstandard formats. There have been some recent encouraging results using natural language processing (NLP) techniques to extract protein names and interactions directly from the online literature in order to predict cellular networks [28-30]. Since applications of NLP technologies to molecular biology are still in early days, they currently have high false positive and false negative rates, and severe limitations on the type and complexity of interaction they can capture. Nevertheless, they show exceptional promise in aiding in the early stages of model development. 

Less common are experimental methods for assigning mechanism and obtaining physical constants for all the known interactions and processes. These are the most difficult to obtain even in vitro. In vivo quantitative measurements are few and far between with the notable exception of NMR-based flux measurements [31]. In a model with many interactions, the probability of finding any quantitative data on all of the interactions is miniscule. When such data exist, the conditions for each experimental measurement and even the strain of organism may be different. This dearth of information, notable in this data-rich age, is the major impediment to detailed predictive models of cellular networks.

The need to systematize as much experimental data as possible has lead to a number of excellent databases of molecular properties, interactions and pathways. These range from highly edited and curated databases such as EcoCyc to databases of primary data such as the Database of Interacting Proteins. Table 1 lists some of these databases and their properties. These databases are an essential infrastructure for future modeling efforts though they are difficult to compile and maintain. They also suffer from a plethora of non-standard formats for storage, query and transport. Some of these problems are being addressed by the development of XML-based data transport standards (see for example, http://xml.coverpages.org/xml.html#applications). Standards are still in flux. When journals start requiring that data generated in support of a paper be submitted in standard, machine-readable format, many of these problems will be ameliorated.

Classes of Models 

Because of the heterogeneity in data type, quality and availability, cellular network modelers have had to develop a number of different model classes that can operate at different levels of abstraction. The most common models are graphical models, i.e. cartoons, of the process. Cartoons graphically depict each biological component connected to others with arrows indicating their interaction. There is little standard nomenclature for cartoons though at least two formal graphical annotations have been suggested recently [15,16]. But even Kurt Kohn’s wonderful summary cartoon of the mammalian cell cycle[15], wherein the conventions for representing interactions and species are outlined in some detail, contains abstractions and missing information. One example in that system is the representation of the important tumor suppressor p53. The diagram shows this single protein having 27 sites to which phosphate can be added or removed by various specific enzymes. The implication is that this protein, theoretically, can be in any of 227=134,217,728 possible phosphorylation states and each of these state has a possibly different Gibbs free energy and different interaction kinetics with all other molecules in the system. This is a problem not only for this model type but spells trouble for any detailed mechanistic model of this system. Nevertheless, the graphical models summarizes a great deal of the current information about a pathway and facilitates the formation of hypotheses about network function as well as pointing out some of the difficulties involved in understanding the network. 

Qualitative models are the first automatically analyzable form of a model beyond a cartoon. They range from simple graphs to logical and statistical models. For example, Jeong et al. [32,33] used only the yeast protein-protein interaction data cited above to conclude that the statistical properties of the graph implied a particular stability of network function to most “deletions” in the graph. This conclusion was strengthened by correlation of the number of interactions per protein with phenotypes of knockout mutants collected from the literature. For more dynamical and specific questions, logical models often are used when mechanistic data are lacking. Boolean, fuzzy logical or rule-based systems have been developed to approach simulation of complex networks. Thieffry and Thomas review their pioneering work in this field in [10]. Many groups have used this paradigm for modeling genetic and developmental systems. Lee et al. used fuzzy logic (a generalization of Boolean logic) as a supplement to kinetic models to include uncertain information necessary for fitting the kinetics of metabolic enzymes[35]. Trelease et al. use a general qualitative simulation tool, QSIM, to simulate the effect of exogenous gene activations in the NF-(B network[34]. All these models require expert insight to codify the high-level rules in a consistent and accurate fashion. Because so much interpretation of the data is necessary before a model is made, there is an increased danger of building in a desired answer. 

When perturbation response or time-series data are available, statistical influence models become feasible.  Linear [36], neural network-like [37], and Bayesian models[22] all have been applied to deduce both the topology of gene expression networks and their dynamics. The amount of data necessary to fit these models often prohibits their use. Statistical influence models are not precisely causal models in that they are fits of model structure to indirect data on interactions. Interpretations of control in these models must be cautious.

With enough data, more mechanistic models can be developed. Cybernetic[38] and power law [39] formalisms assert a causal structure, but employ generic nonlinear functions formally parameterized by kinetic data and possibly constrained by optimality conditions. Such models form the basis of a large class of metabolic control analyses and dynamical simulations. More detailed models require that chemical or physical mechanisms be asserted for each interaction. For example, McAdams and Arkin, propose that, because of the small concentrations of the molecules involved, gene expression must be a stochastic process of a particular sort [40]. They follow the implications of the theory in an integrated model of the (-phage lysis/lysogeny decision and show that the decision is fundamentally nondeterministic[41]. Physical models have the largest data requirement, are the most rigorously falsifiable, and, in principle, are the most predictive.

There is always a balance between top-down and bottom-up models. No model is fully bottom-up. Abstractions can both clarify the sources of control in a network and indicate where more data are necessary. There is always the problem of unknown players, and unknown and uncharacterized interactions in the network. A formal model that can be represented in mathematical form has the advantage of being a precise statement of the current understanding and can be formally proved or disproved and checked for consistency. 

Basic Analysis and Simulation of Models 

Once a model has been formulated, there are a number of standard approaches for analyzing its properties. If the model is dynamical, then simulation is the most common approach. Steady-state analyses like bifurcation theory, stoichiometric network analysis, flux-balance analysis, and sensitivity analysis also are commonly applied. These give more detailed insights into system control and can indicate where the model is sensitive to parameters or missing data. Any analysis of a model generally goes beyond these formal methodologies. This will be discussed in the next section. 

A number of different tools have been developed to simulate and analyze models of cellular systems. (See Table 2). More general tools such as Mathematica and MATLAB are also commonly used for simulation. Because these two programs are ubiquitous, they provide good facilities for transferring models among different researchers. Platform-independent model specification languages also are under development. For example, SBML (http://www.cds.caltech.edu/erato/sbml/docs/index.html) and CellML (http://www.cellml.org/) are currently being developed in cooperative and community fashion.

Applications 

Models and their analysis have many purposes. In recent years we have seen the development of interesting uses. The small selection of papers described below serves to demonstrate how models can be useful in organizing thoughts and testing hypotheses.

Demonstrating a design property of a network. Quite often a network is so complex or so odd in structure that it is of interest to understand what properties of its design are necessary for cellular function. In a semi-mechanistic model of the gap and pair rule genes in Drosophila melanogaster that determine segment polarity, Von Dassow et al. show that the structure of the network is both sufficient to explain a great deal of the observed cellular patterning and moreover, that the network behavior is highly robust to parameter variation[43]. This evokes earlier results by Barkai and Leibler who demonstrated robustness in exact adaptation in the E. coli chemotactic pathways[44]. Endy et al., in one of the first nearly whole genome models of an organism, model the entire life-cycle of the T7 phage during infection of E. coli [45]. They explore the effect of genome organization on the efficiency of phage growth. They find that the qualitative behavior of the phage was largely insensitive to genome organization. Specific “shuffled” genomes were found, though, that allow the computational phage to grow better than wild-type under specified conditions. These predictions were not born out experimentally, but the experiment didn’t entirely match the “genotype” of the model. Even so, models can be most useful when they fail in unexpected ways. Modifications to the model to bring it in line with experiment are hypotheses that can then be experimentally tested. Another interesting example of a generic design property in a signal transduction model is the investigation by Levchenko et al. of the role of scaffolding proteins in mitogen-activated protein kinase signaling[46]. They show that the combinatorics of protein binding to the scaffold molecule can either amplify or reduce activity of the pathway depending on the relative concentration of the scaffold itself.  

Developing an understanding of endogenous control. When more mechanistic models are available precise statements about control in the networks can be made. The most popular form of control analysis is metabolic control analysis, which has been reviewed elsewhere. One of the best examples at elucidating control with simulation, phase plane analysis and bifurcation theory is the ongoing work by Tyson on the yeast cell cycle. In [47], Chen et al. summarize and extend this work to elucidate control of different phases of mitosis and explain the impact of 50 different mutants on these decisions. The control of cytokine trafficking in immune cells has been modeled by a number of groups. Recently, Fallon and Lauffenburger use a kinetic model to explain, among other things, a counterintuitive result that the increased potency of an IL-2 analog does not derive from tighter receptor binding, but is due to differential binding to receptor subunits that get alternatively sorted [48]. 

Developing a strategy for control or design. Models can be used to test design ideas for engineering networks in cells. Elowitz and Leibler [49] and Gardner, Cantor and Collins [50] use very simple models as support for the design of a genetic oscillator and a switch, respectively, that they implemented in E. coli. Models also can be used to test designs for control of cellular networks. Endy and Yin used their T7 model to propose a pharmaceutical strategy for preventing both T7 propagation and development of drug resistance through mutation [51].

Proving necessity and/or sufficiency. Given an observed cell behavior, models can be used to prove necessity of a given regulatory motif or sufficiency of known interactions to produce the phenomenon. Yi et al. demonstrate the necessity at least one integral feedback loop to explain robust adaptation in the chemotactic signal transduction pathways [52]. They identify the loop in E. coli with the receptor methylation/demethylation system. Qi, Groves, and Chakraborty demonstrate the sufficiency of membrane energetics, protein diffusion, and receptor binding kinetics to generate a particular dynamic pattern of protein location at the synapse between two immune cells [42]. The model is striking in that the current theory holds that the cytoskeleton plays an active role in organization of the supramolecular structures. In rare cases, models also can be used to show insufficiency of a reasonable model to explain observed behavior. See for example the discussion in [45].

Explaining the contradictory or exotic behavior of complex networks. Contradictions in the literature about any particular pathway abound. In one example, the behavior of a number of different mutants in the E. coli chemotaxis pathway seemed to behave contrary to the logical organization of the network. Abouhamad et al. use a model of chemotaxis that had been validated on over 65 mutant strains of E. coli to help design experiments to successfully explain the paradoxes[53]. In a series of simplified kinetic models for eukaryotic signal transduction pathways such as the EGF receptor signaling pathway, Bhalla and Iyengar explore how these pathways could generate sustained activation, and bistable and pulsatile behaviors[54].
There are many other excellent models with different properties and goals than those described here and it is unfortunate that there is not space to go into them. As different researchers build more models about related systems, there will be a drive to combine them. They will cover a wide range of physical phenomena from electrochemical to mechanical and cross-scales from atomic to hundred of microns. Aside from standardizing model specifications, there are deep theoretical and computational challenges to analyzing and simulating these multivariate, multiscale and hybrid systems that have proven refractory for decades. The examples above demonstrate that these difficulties need not prevent modeling from being a powerful adjutant for the exploration of network function.

Conclusions 

Modeling is becoming a common and powerful support for understanding cellular behavior. Paradoxically, though new measurement technologies are uncovering increasingly complex networks of chemical and physical interactions, there are relatively few systems with enough quality data to create detailed models of cellular function. The applications of these models are of sufficient import to demand that this void be filled. The challenge is to design the computation/experiment cycle to efficiently deduce and characterize signaling pathways in single cells. This requires the application of many different experimental technologies. Data from microarrays, protein mass-spectroscopy, capillary and high-pressure chromatographies, high-end fluorescence microscopy, and other tools must be combined so that models of sufficient accuracy can be built and validated on standardized datasets. Such coordinated marshaling of researchers and resources towards a shared goal is a common model for industry, but this multi-laboratory approach is new for the academic environment. Large government-funded projects like the Alliance for Cellular Signaling (http://www.cellularsignaling.org/), a consortium researchers dedicated to quantitative study of G-protein coupled signal transduction in cardiomyocytes and B-cells, or private organizations like the Institute for Systems Biology (http://www.systemsbiology.org/home.html) are the new great experiments in bringing the cooperative approach to academic biology. These efforts will have to be carefully nurtured if this first great push to synthesize over a half-century’s data on the molecular basis of cellular function is to succeed.
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Table 1. Example Databases in Support of Simulation

	Name
	Descriptors
	Website

	BBID
	sgmE
	http://bbid.grc.nia.nih.gov/

	BIND
	seD
	http://www.bind.ca/ 

	Brenda
	mEPM
	http://www.brenda.uni-koeln.de/ 

	BRITE
	sgmEP
	http://www.genome.ad.jp/brite/brite.html 

	CSNDB
	sE
	http://geo.nihs.go.jp/csndb/ 

	DIP
	smEPD
	http://dip.doe-mbi.ucla.edu/ 

	EcoCyc/Metacyc
	mED
	http://ecocyc.org/ 

	EMP
	mEPM
	http://www.empproject.com/ 

	GeNet
	sE
	http://www.csa.ru:81/Inst/gorb_dep/inbios/genet/genet.htm

	GeneNet
	smgE
	http://wwwmgs.bionet.nsc.ru/mgs/systems/genenet/

	Kegg
	sgmED
	http://www.genome.ad.jp/kegg/kegg.html 

	SPAD
	sgE
	http://www.grt.kyushu-u.ac.jp/eny-doc/ 

	Transfac/Transpath
	sgED
	http://transfac.gbf.de/TRANSFAC/ 

	UM-BBD
	mE
	http://umbbd.ahc.umn.edu/ 

	WIT
	MEPM
	http://wit.mcs.anl.gov/WIT2/ 

	
	
	


Table 1. Descriptor key- s- signal transduction pathways, m- metabolic pathways, g-genetic pathways, E- edited content, P- primary data, M- mechanistic/kinetic data available, D- downloadable.

Table 2. Example Simulation Programs

	Name
	Descriptors
	Website

	Gepasi/Copasi
	fkFW
	http://gepasi.dbs.aber.ac.uk/softw/gepasi.html

	BioSim
	qWMU
	http://www.molgen.mpg.de/~biosim/BioSim/BioSimHome.html 

	Jarnac
	krfbFWS
	http://members.tripod.co.uk/sauro/Jarnac.htm

	DBSOLVE
	kbFWD
	http://websites.ntl.com/~igor.goryanin/

	MCELL
	rsU
	http://www.mcell.cnl.salk.edu/

	Virtual Cell
	ksDFWMU
	http://www.nrcam.uchc.edu/ 

	E-Cell
	kWUS
	http://www.e-cell.org/ 

	Neuron
	ksFWMUS
	http://neuron.duke.edu/ 

	Genesis
	ksUS
	http://www.bbb.caltech.edu/GENESIS/genesis.html 

	Plas
	kfbFW
	http://correio.cc.fc.ul.pt/~aenf/plas.html 

	Ingeneue
	qkFMWUS
	http://www.ingeneue.org/

	DynaFit
	kfW
	http://www.biokin.com/dynafit/

	Stochsim
	rS
	http://www.zoo.cam.ac.uk/comp-cell/StochSim.html

	T7 Simulator
	kUS
	http://virus.molsci.org/t7/

	Molecularizer/Stochastirator
	krUS
	http://opnsrcbio.molsci.org/alpha/comps/sim.html

	
	
	


Notation: all packages have facilities for chemical kinetic simulation of one sort or another. Some are better designed for metabolic systems, others for electrochemical systems, and still others for genetic systems. The descriptors are as follows: (q)- qualitative simulation, (k)-deterministic kinetic simulation, (r)- stochastic process models, (s)- spatial processes, (f)- flux balance/metabolic control and related analyses, (b)-bifurcation analyses and steady-state calculation, (D)- database connectivity, (F)- fitting, sensitivity and optimization code, (W)- runs on windows, (M)- runs on Macintosh, (U)- runs on linux or Unix, (S) – source code available.
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