
Automated Abstraction Methodology for

Genetic Regulatory Networks�

Hiroyuki Kuwahara1, Chris J. Myers1,
Michael S. Samoilov2, Nathan A. Barker1, and Adam P. Arkin2

1 University of Utah, Salt Lake City, UT 84112, USA
{kuwahara, myers, barkern}@vlsigroup.ece.utah.edu

2 Howard Hughes Medical Institute, University of California, Berkeley
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

{mssamoilov, aparkin}@lbl.gov

Abstract. In order to efficiently analyze the complicated regulatory
systems often encountered in biological settings, abstraction is essential.
This paper presents an automated abstraction methodology that system-
atically reduces the small-scale complexity found in genetic regulatory
network models, while broadly preserving the large-scale system behav-
ior. Our method first reduces the number of reactions by using rapid
equilibrium and quasi-steady-state approximations as well as a num-
ber of other stoichiometry-simplifying techniques, which together result
in substantially shortened simulation time. To further reduce analysis
time, our method can represent the molecular state of the system by a
set of scaled Boolean (or n-ary) discrete levels. This results in a chemical
master equation that is approximated by a Markov chain with a much
smaller state space providing significant analysis time acceleration and
computability gains. The genetic regulatory network for the phage λ ly-
sis/lysogeny decision switch is used as an example throughout the paper
to help illustrate the practical applications of our methodology.

1 Introduction

Numerous methods have been proposed for modeling genetic regulatory networks
[1,2]. While many traditional approaches have relied on a differential equation
representation as inferred from a set of underlying biochemical reactions, there
has been a growing appreciation of their limitations [3,4,5,6]. In particular, differ-
ential equation analysis of genetic networks generally assumes that the number
of molecules in a cell is high and their concentrations can be viewed as continuous
quantities, while the underlying reactions are presumed to occur deterministi-
cally. However, in genetic networks these assumptions frequently do not hold.
For example, DNA molecules are typically present in single digit quantities while
some promoters can lead to substantial fluctuations in transcription/translation
rates and essentially non-deterministic expression characteristics [7,8].
� This material is based upon work supported by the National Science Foundation

under Grant No. 0331270.

C. Priami and G. Plotkin (Eds.): Trans. on Comput. Syst. Biol. VI, LNBI 4220, pp. 150–175, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automated Abstraction Methodology for Genetic Regulatory Networks 151

In these situations, accurate genetic regulatory network modeling requires the
use of a discrete and stochastic process description such as the master equation
formalism [9]. This approach describes well-stirred (bio)chemical systems at the
individual reaction level by exactly tracking the quantities of each molecular
species and treating each reaction as a separate random event. It further allows
the exact discrete simulation of system behavior via Gillespie’s Stochastic Simu-
lation Algorithm (SSA) [10]. Unfortunately, the computational requirements for
such simulations are generally practical only for relatively small systems with no
major reaction time-scale separations. Even then, the computational demands
can be very high. For example, Arkin et al.’s numerical analysis of the phage λ
decision network using a hybrid stochastic kinetic and statistical-thermodynamic
model required a 200-node supercomputer [3].

Several other techniques for reducing the computational costs of stochastic sim-
ulations have been proposed [11]. For instance, Gibson and Bruck [12] developed a
method to improve Gillespie’s first reaction method [10] by reducing the random
numbers generated allowing them to simulate the λ network on 10 desktop work-
stations [13]. While this method does improve efficiency significantly for systems
with many species and reaction channels, every reaction event must still be simu-
lated one at a time. Ultimately, given the substantial computational requirements
of stochastic simulations and comparative complexities of in situ genetic regula-
tory networks, abstraction is absolutely essential for efficient analysis of any real-
istic system. This abstraction can be achieved either during the simulation or the
model generation stage. An example of abstraction during simulation is Gillespie’s
explicit τ -leaping method [14]. This method approximates the number of firings of
each reaction in a pre-defined interval rather than executing each reaction individ-
ually. While this and similar methods [15,16,17] are very promising, they may not
perform well for systems with rapidly changing reaction rates, such as those driven
by small molecular counts as frequently encountered in gene-regulatory systems.
Rao and Arkin performed model abstraction by using (bio)chemical insight in com-
bination with the quasi-steady-state assumption to remove fast reactions (thus re-
ducing the problem dimensionality), and then applied a modified version of SSA to
the simplified model [18]. Since this method is not automated, it is difficult to apply
to reactions within complex biological networks. Furthermore, the quasi-steady-
state approximation only represents one of many approximations that can be used
to estimate the dynamics of a biological reaction network.

This paper presents a generalized and automated model abstraction method-
ology that systematically reduces the small scale complexity found in REaction-
Based (REB) models of genetic regulatory networks (i.e., models composed of a
set of chemical reactions), while broadly preserving the large scale system behav-
ior. Notably, though many model reductions of (bio)chemical networks have tradi-
tionally been performed manually (i.e.,“by hand”) this practice is time-consuming
and is susceptible to errors in large model transformations. For example, whereas
the quasi-steady-state approximation has long been carried out to reduce the com-
plexity of biochemical networks, this practice can result in inaccuracies when the
underlying hypothesis of the approximation is ignored and the application of the

152 H. Kuwahara et al.

quasi-steady-state approximation is inappropriate [19]. Thus, by automating and
systematizing this process, our method is able to significantly ameliorate the prob-
lem of computability by lowering the model translation error rate and improving
simulation times by reducing system complexity.

Our methodology—outlined in Figure 1—begins with a REB model, which
could be simulated using SSA or one of its variants though at a substantial com-
putational cost. To reduce the cost of simulation, this paper describes an auto-
matic method that we have implemented for simplifying the original REB model
by applying several abstraction methods that leverage the rapid equilibrium and
quasi-steady-state assumptions. The result is a new abstracted model with less
reactions and species which substantially lowers the cost of stochastic simulation.
To further reduce the complexity of the system as well as analysis time, this simpli-
fied REB model can be automatically translated into a Stochastic Asynchronous
Circuit (SAC) model by encoding chemical species molecule counts into Boolean
(or n-ary) levels. This model can then be efficiently analyzed using the Markov
chain analysis method within the asynchronous circuit tool ATACS [20].

This paper further exemplifies the applicability of our model abstraction
methodology to genetic regulatory networks by applying it to the phage λ develop-
mental decision circuit [3]. Hence, various abstractions in this work target the spe-
cific features found in genetic regulatory networks to reduce the analysis time. For
example, one abstraction method is used to reduce the low-level description of the
interactions of transcription factors and cis-regulatory elements which, as noted
earlier, are elements that are typically present in small quantity and therefore sus-
ceptible to the discrete-stochastic effect. This abstraction substantially acceler-
ates the computation that otherwise would require an expensive non-deterministic
treatment. Moreover, the ON-OFF switching behavior often found in genetic reg-
ulatory networks is suitable for our abstraction methodology, especially for a SAC
model generation. Thus, whereas we believe that our model abstraction method-
ology can in theory be applied to any (bio)chemical networks, this paper concen-
trates on genetic regulatory networks as a proof of concept to evaluate our method-
ology which includes abstraction methods tailored for such networks.

REB
Model

��

��
��

REB
Abstraction

Methods

��
Abstracted

REB
Model

��

��

N-ary
Trans-

formation

�� SAC
Model

��

��

Markov
Chain

Analysis

��
��Stochastic

Simulation
�� Results

Fig. 1. Automated model abstraction tool flow

2 Reaction-Based Abstraction Methods

In chemical and biological molecular systems, including genetic regulatory net-
works, reaction-based representations typically provide the most detailed level

Automated Abstraction Methodology for Genetic Regulatory Networks 153

of specification for the underlying system structure and dynamics [21]. Reaction-
based abstraction methods are used to reduce a REB model’s size by merging
reactions, removing irrelevant reactions, etc. We have implemented several such
techniques, each traversing the graph structure of the REB model and applying
transformations to it when the respective conditions are satisfied. The result is a
new REB model with fewer reactions and/or species. This section first describes
the REB model formally, and then presents several abstraction methods as well
as discusses how they are applied to our λ model. Finally, this section presents
simulation results for the λ model before and after these abstractions.

2.1 Reaction-Based Model

The REB model is a bipartite weighted directed graph that connects species
based on the interactions that they can have via a set of reaction channels.1

Definition 1. A REB model is specified with a 5-tuple 〈S,R,Rrev,E,K〉 where
S is the set of species nodes, R is the set of reaction nodes, Rrev ⊆ R is the set
of reversible reactions, E : ((S×R)∪(R×S)) → N is a function that returns the
stoichiometry of the species with respect to a reaction, and K : R → (R|S| → R)
are the kinetic rate laws for the reactions.

For example, a REB model with a single reversible reaction r1 of the form:

2s1 + s2

k1

�
k−1

s1 + s2 + s3

contains the following sets:

S = {s1, s2, s3},
R = {r1},

Rrev = {r1},
E = {((s1, r1), 2), ((s2, r1), 1), ((s3, r1), 0),

((r1, s1), 1), ((r1, s2), 1), ((r1, s3), 1)},
K = {(r1 → (([s1], [s2], [s3]) → (k1[s1]2[s2] − k−1[s1][s2][s3])))}.

In the kinetic rate law, [s] is a variable that represents the state of species s.
Note that [s]0 is used to denote the initial number of molecules of species s. Also
note that the user can specify a set of interesting species, (i.e., Si ⊆ S), which
should never be abstracted, so that they can be analyzed.

If a reaction consumes a species, then that species is a reactant for that
reaction. If a reaction produces a species, then that species is a product for that
reaction. If a species is neither produced nor consumed by a reaction, then it is
a modifier to that reaction. Rr

s, Rp
s , and Rm

s are the sets of reactions in which

1 A REB model can be described via an emerging standard, the Systems Biology
Markup Language (SBML) [22]. Graphical user interface tools such as BioSPICE’s
PathwayBuilder [23] allow researchers a convenient mechanism to create such models.

154 H. Kuwahara et al.

species s appears as a reactant, product, and modifier, respectively. Similarly,
Sr

r, Sp
r , and Sm

r , are the sets of species that appear in reaction r as a reactant,
product, and modifier, respectively. These sets are defined formally below:

Rr
s = {r ∈ R | E(s, r) > E(r, s)},

Rp
s = {r ∈ R | E(r, s) > E(s, r)},

Rm
s = {r ∈ R | E(s, r) > 0 ∧E(s, r) = E(r, s)},
Sr

r = {s ∈ S | E(s, r) > E(r, s)},
Sp

r = {s ∈ S | E(r, s) > E(s, r)},
Sm

r = {s ∈ S | E(s, r) > 0 ∧ E(s, r) = E(r, s)}.
Note that in these definitions a species is considered a reactant of a reaction

only if the net change of the state of that species by a reaction is negative.
Similarly, it is a product only if the net change of the state of that species by a
reaction is positive. Finally, it is considered a modifier if it is used in a reaction
but the state of that species is not changed by that reaction. Our example
includes the following nonempty sets:

Rr
s1 = {r1},

Rp
s3 = {r1},

Rm
s2 = {r1},

Sr
r1 = {s1},

Sp
r1 = {s3},

Sm
r1 = {s2}.

Sections 2.2 to 2.5 describe general abstraction methods that substantially re-
duce the model complexity. Section 2.6 describes how these abstraction methods
can be combined together and applied to reduce the complexity of REB models.
Finally, Section 2.7 shows the improvements gained by our approach.

2.2 Michaelis-Menten Approximation

Consider the following elementary enzymatic reactions where E is an enzyme,
S is a substrate, C is a complex form of E and S, and P is a product.

E+ S
k1

�
k−1

C k2−→ E + P (1)

If the complex C dissociates into E and S much faster than it is converted
into the product P (i.e., k−1 >> k2), then the substrate can be assumed to
be in rapid equilibrium with the complex. In this case, these reactions can be
transformed to the following Michaelis-Menten (MM) form:

S
k2EtotK1[S]

1+K1[S]−−−−−−−−→ P , (2)

where Etot is the total concentration of E and C, and K1.

Automated Abstraction Methodology for Genetic Regulatory Networks 155

Using this approximation, a REB model can be reduced by searching for pat-
terns matching the reaction given by Expression 1 above with rate laws that
satisfy the conditions. When such a pattern is found and the species matched to
C only appears in the reactions in this pattern, all the reactions in the pattern
are removed from the model along with the complex C. Finally, a new reaction
is introduced with the form given in Expression 2 above.

The rapid equilibrium approximation has two advantages: (1) the state space
of the process is reduced since intermediate species are eliminated, (2) simulation
time is reduced by removing fast reactions. Figure 2 shows a graphical repre-
sentation of a more complex competitive enzymatic reaction from Arkin et al.’s
phage λ model [3]. In Figure 2(a), proteins CII and CIII compete for binding
to protease P1—producing complexes P1·CII and P1·CIII, respectively. (Note
that each reaction node that is connected to a species with a double arrow is a
shorthand way of showing a reversible reaction.) In this complex form, this pro-
tease acts to degrade CII and CIII. An extended form of the rapid equilibrium
approximation can be applied to this network to remove this protease, its com-
plex forms, and the reactions that form these complexes. Importantly, this also
clarifies the essential biological meaning of the process by removing intermediate
steps, which may otherwise obscure the functional logic of the mechanism. The
resulting abstracted reaction model is shown in Figure 2(b).

The algorithms shown in Figure 3 implement the rapid equilibrium approxi-
mation for multiple alternative substrate systems which is a generalization of the
complete characterization of enzyme-substrate and enzyme-substrate-competitor
reactions [24]. First, Algorithm 1 considers each species, s, as a potential en-
zyme. Each species is checked using Algorithm 2. If s is an interesting species
or does not occur as a reactant in any reaction, then s is not considered fur-
ther (line 2). Otherwise, each reaction, r1, in which s is a reactant is con-
sidered in turn. If r1 is not reversible, does not have two reactants, or does
not have a rate law of the right form (i.e., kf [s][s1] − kr[sc]), then again s is
not considered further (line 4). Reaction r1 combines s and s1 into a complex,
sc. If the initial molecule count of this complex is not 0, sc is an interesting
species, sc does not occur as a reactant or product in exactly one reaction, or
occurs as a modifier in any, then again this approximation is terminated for
s (lines 5 and 6). The reaction r2 converts sc into a product and releases the
enzyme s. If this reaction is reversible, does not have exactly one reactant and
no modifiers, does not have s as a product, has more than two products, or
does not have a rate law of the form, k2[sc], then s is not considered further
(lines 7-9). Finally, it checks the validity of the rapid equilibrium assumption
by comparing the ratio of the product dissociation rate constant and the sub-
strate dissociation rate constant to the predefined threshold constant T1 (line
10). For each reaction, a configuration is formed that includes the substrate
s1, complex sc, equilibrium constant kf/kr, production rate k2, complex form-
ing reaction r1, and product forming reaction r2 (line 11). If Algorithm 2 ter-
minates successfully (i.e., returns a nonempty set of configurations, C), then
Algorithm 3 is called to apply the transformation to the REB model. First,

156 H. Kuwahara et al.

CII ��
r

��������������� P1��
r

		������������� ��
r

���������������� CIII

r

���������������

k8·[CII]·[P1]−k9·[P1·CII]��
p

��

k11·[CIII]·[P1]−k12·[P1·CIII]��
p

��
P1 · CII

r

��

P1 · CIII

r

��
k10·[P1·CII]

p

��

p

k13·[P1·CIII]

p

��

p

��

() ()

(a)

CII

r

��

m

����������������������� CIII

r

��

m

�����������������������

k10 ·P1tot·k8/k9·[CII]
1+k8/k9·[CII]+k11/k12·[CIII]

p

��

k13 ·P1tot·k11/k12·[CIII]
1+k8/k9·[CII]+k11/k12·[CIII]

p

��
() ()(b)

Fig. 2. Rapid equilibrium approximation: (a) original model, and (b) abstracted model

it loops through the set of configurations to form an expression that is used
in the denominator in each new rate law as well as forming a list of all the
substrates that bind to the enzyme s (lines 1-6). Next, for each configuration
(s1, sc, K1, k2, r1, r2), it makes the substrate s1 a reactant for r2, makes all other
substrates modifiers for r2, creates a new rate law for r2, and removes species
sc and reaction r1 (lines 7-13). Finally, this algorithm removes the enzyme, s
(line 14).

When k−1 is not much greater than k2, the rapid equilibrium approxima-
tion cannot be applied. In such cases, however, if the total concentration of
the enzyme is much less than the sum of the initial concentration of the sub-
strate and the MM constant (i.e., [E]0 << [S]0 + KM where KM = (k−1 +
k2)/k1), then the standard quasi-steady-state approximation can be used instead
to transform an enzymatic one-substrate reaction to the MM form with a some-
what more complex kinetic rate law (i.e., K1 in Expression 2 is replaced with
KM

−1).

Automated Abstraction Methodology for Genetic Regulatory Networks 157

Algorithm 1. Rapid equilibrium approximation
Model RapidEqApprox(Model M)

1: for all s ∈ S do
2: C← RapidEqConditionSatisfied(M, s)
3: if C �= ∅ then M ← RapidEqTransform(M,s,C)
4: end for
5: return M

Algorithm 2. Check the conditions for rapid equilibrium approximation
Configs RapidEqConditionSatisfied(Model M, Species s)

1: C← ∅
2: if (s ∈ Si) ∨ (|Rr

s| = 0) then return ∅
3: for all r1 ∈ Rr

s do
4: if (r1 �∈ Rrev) ∨ (|Sr

r1 | �= 2) ∨ (K(r1) �= “kf [s][s1]− kr[sc]”) then return ∅
5: if ([sc]0 �= 0) ∨ (sc ∈ Si) then return ∅
6: if (|Rr

sc | �= 1) ∨ (|Rm
sc | �= 0) ∨ (Rp

sc | �= 1) then return ∅
7: {r2} ← Rr

sc

8: if (r2 ∈ Rrev) ∨ (|Sr
r2 | �= 1) ∨ (|Sm

r2 | �= 0) then return ∅
9: if (s /∈ Sp

r2) ∨ (|Sp
r2 | �∈ {1, 2}) ∨ (K(r2) �= k2[sc]) then return ∅

10: if k2/kr > T1 then return ∅
11: C← C ∪ {(s1, sc, kf/kr, k2, r1, r2)}
12: end for
13: return C

Algorithm 3. Perform the rapid equilibrium approximation
Model RapidEqTransform(Model M, Species s, Configs C)

1: kinetic law expression Z ← 1
2: L← ∅
3: for all (s1, sc, K1, k2, r1, r2) ∈ C do
4: Z ← Z + (K1 ∗ [s1])
5: L← L ∪ {s1}
6: end for
7: for all (s1, sc, K1, k2, r1, r2) ∈ C do
8: M ← addReactant(M,s1, r2,E(s1, r1))
9: ∀m ∈ L \ {s1}. M ← addModifier(M, m, r2)

10: K(r2)← (k2 ∗ [s]0 ∗ ke ∗ [s1])/Z
11: M ← removeSpecies(M,sc)
12: M ← removeReaction(M,r1)
13: end for
14: M ← removeSpecies(M,s)
15: return M

Fig. 3. Algorithms to perform rapid equilibrium approximation

2.3 Operator Site Reduction

REB models of genetic networks generally include multiple operator sites which
transcription factors may occupy. It is often the case that the rates at which
transcription factors bind and unbind to these operator sites are rapid with

158 H. Kuwahara et al.

respect to the rate of open complex formation (i.e., initiation of transcription).
It is also typically the case that the number of operator sites is much smaller
than the number of RNA polymerase (RNAP) and transcription factor molecules.
Therefore, a method similar to rapid equilibrium approximation called operator
site reduction can be used to systematically merge reactions and remove operator
sites and their complexes from REB models. Note that this method may also be
applicable to other molecular scaffolding systems such as those found in signal
transduction networks.

The first step in this transformation is to identify operators within the REB
model. This is done by assuming that an operator is a species small in number
that is neither produced nor degraded. Suppose our algorithm has identified an
operator O, and there are N + 1 configurations in which transcription factors
and RNAP can bind to it. Let Oi, Ki, and Xi with i ∈ [1, N], be the i-th
bound complex of the operator O, the equilibrium constant for forming this
configuration, and the product of the concentrations of the substrates for each
component of the complex in this configuration, respectively. Let O0 be the
operator in free form (i.e., not bound to anything). Let Ci with i ∈ [0, N] be each
of the operator configurations. Then, assuming rapid equilibrium, the probability
of this operator being in each configuration is:

Pr(Ci) =

{
1
Z if i = 0
Ki·Xi

Z if 1 ≤ i ≤ N

where Z = 1 +
∑N

j=1 Kj · Xj . This probability is the same as the equilibrium
statistical thermodynamic model when Ki = exp(ΔGi/RT) where ΔGi is the
relative free energies for the i-th configuration, R is the gas constant, and T is the
absolute temperature [25]. Assuming that Otot = [O0]0, then [Oi] = Pr(Ci)Otot

is the fraction of operators in the i-th configuration.
Figure 4(a) shows the graphical representation of a portion of a REB model

for the PRE promoter from the phage λ decision network [3]. The top three
reactions involve the binding of RNAP and CII to PRE and the bottom two
reactions result in the production of 10 molecules of the protein CI. In this
example, there are 4 configurations of the operator, namely, PRE, PRE·RNAP,
PRE·CII·RNAP, and PRE·CII. Assuming that the operator-binding and unbind-
ing rates are much faster than those of open complex formation, our method can
apply operator site reduction. Figure 4(b) is the result of applying this abstrac-
tion method to Figure 4(a). The result has only three species and two reactions.
The transformed model represents the probability of PRE being in a configu-
ration that results in production of CI instead of modeling every binding and
unbinding of transcription factors and RNAP to the promoter precisely. After
performing operator site reduction on all of the operators, the resulting two re-
actions are found to be structurally similar and can be further combined into a
single reaction by applying our similar reaction combination method. Also, after
performing operator site reduction on all of the operators, RNAP only appears
as a modifier in every reaction. In this case, another abstraction method—known
as modifier constant propagation—can be applied. Namely, in each kinetic law

Automated Abstraction Methodology for Genetic Regulatory Networks 159

RNAP��

r

��

��

r

�������������������������������� CII��

r

��

��

r

������������������������������� PRE��

r

��																																																										

r

��

 ��

r

��
k1·[RNAP]·[PRE]−k−1·[PRE·RNAP]��

p

��

k2·[RNAP]·[CII]·[PRE]−k−2·[PRE·CII·RNAP]��
p

��

k3·[CII]·[PRE]−k−3·[PRE·CII]��
p

��
PRE · RNAP

m

PRE · CII · RNAP

m

PRE · CII

kbasal·[PRE·RNAP]

10p

����������������������������� kpre·[PRE·CII·RNAP]

10p

��
CI

(a)

RNAP

m

m

���������������������������� CII

m

m

kbasal· k1
k−1

[RNAP]·PRE0

1+
k1

k−1
·[RNAP]+

k2
k−2

·[CII]·[RNAP]+
k3

k−3
·[CII]

10p

�����������������

kpre· k2
k−2

·[CII][RNAP]·PRE0

1+
k1

k−1
·[RNAP]+

k2
k−2

·[CII]·[RNAP]+
k3

k−3
·[CII]

10p

�����������������

CI

(b)

CII

m

(kbasal· k1
k−1

+kpre· k2
k−2

·[CII])RNAP0·PRE0

1+
k1

k−1
·RNAP0+

k2
k−2

·[CII]·RNAP0+
k3

k−3
·[CII]

10p

��
CI

(c)

Fig. 4. Operator site reduction: (a) original model, (b) abstracted model, and (c) after
similar reaction combination and modifier constant propagation

in which [RNAP] appears, it can be replaced with the constant, RNAP0, which
is the initial molecule count of RNAP. The result after both of these steps is
shown in Figure 4(c).

The algorithms shown in Figure 5 implement operator site reduction. First,
Algorithm 4 considers each species, s, as a potential operator site. Each species

160 H. Kuwahara et al.

Algorithm 4. Operator site reduction
Model OpSiteReduction(Model M)

1: for all s ∈ S do
2: C← OpSiteConditionSatisfied(M, s)
3: if C �= ∅ then M ← OpSiteT ransform(M,s,C)
4: end for
5: return M

Algorithm 5. Check the conditions for operator site reduction
Configs OpSiteConditionSatisfied(Model M, Species s)

1: C← ∅
2: if [s]0 > maxOperatorThreshold then return ∅
3: if (s ∈ Si) ∨ (|Rp

s | �= 0) then return ∅
4: for all r1 ∈ Rr

s do
5: if (r1 �∈ Rrev) ∨ (|Sr

r1 | < 2) ∨ (|Sp
r1 | �= 1) then return ∅

6: if (K(r1) �= “kf

∏
s′∈Sr

r1
[s′]E(s′,r1) − kr[sc]”) then return ∅

7: if (sc ∈ Si) ∨ (|Rp
sc | �= 1) ∨ (|Rr

sc | �= 0) then return ∅
8: for all r2 ∈ Rm

sc do
9: if (|Sr

r2 | �= 0) ∨ (|Sm
r2 | �= 1) ∨ (|Sp

r2 | �= 1) ∨ (K(r2) �= k2[sc]) then return ∅
10: end for
11: e← (kf/kr)

∏
s′∈(Sr

r1
\{s})[s

′]E(s′,r1)

12: C← C ∪ {(sc, e, r1)}
13: end for
14: return C

Algorithm 6. Perform transformation for operator site reduction
Model OpSiteTransform(Model M, Species s, Configs C)

1: kinetic law expression Z ← 1
2: L← ∅
3: for all (sc, e, r1) ∈ C do
4: Z ← Z + e
5: L← L ∪ Sr

r1

6: end for
7: for all (sc, e, r1) ∈ C do
8: for all r2 ∈ Rm

sc with K(r2) = k2[sc] do
9: ∀m ∈ L. M ← addModifier(M, m, r2)

10: K(r2)← (k2 ∗ [s]0 ∗ e)/Z
11: end for
12: M ← removeSpecies(M,sc)
13: M ← removeReaction(M,r1)
14: end for
15: M ← removeSpecies(M,s)
16: return M

Fig. 5. Algorithms for operator site reduction

Automated Abstraction Methodology for Genetic Regulatory Networks 161

is checked using Algorithm 5. First, it is assumed that the molecule count of
operator sites is small, so if s has an initial molecule count greater than a given
threshold, then it is assumed not to be an operator site (line 2). Next, if s is an
interesting species or occurs as a product in any reaction, then s is not considered
further (line 3). Otherwise, each reaction, r1, in which s is a reactant is considered
in turn. If r1 is not reversible, has less than two reactants, does not have exactly
one product, or does not have a rate law of the right form, then again s is not
considered further (lines 5 and 6). Each reaction, r1, combines the potential
operator site, s, with RNAP and/or transcription factors forming a complex,
sc. If sc is an interesting species, sc does not occur as a product in exactly
one reaction, or occurs as a reactant in any, then again this approximation is
terminated for s (line 7). The species sc may appear as a modifier in any number
of reactions that result in the transcription and translation of proteins. Each of
these reactions, r2, is checked that it has no reactants, only one modifier, only
one product, and a rate law of the right form (lines 8-10). For each complex, sc, a
configuration is formed that includes the complex sc, an equilibrium expression
for this configuration, and the complex forming reaction r1 (lines 11 and 12).
If Algorithm 5 terminates successfully, then Algorithm 6 is called to apply the
transformation to the REB model. This algorithm is very similar to the one for
rapid equilibrium. Again, it loops through the set of configurations to form an
expression that is used in the denominator in each new rate law as well as forming
a list of all the transcription factors that bind to the operator site s (lines 1-6).
Next, it considers each configuration, (sc, e, r1). For each reaction r2 in which
sc appears as a modifier, it adds all the transcription factors as modifiers and
creates a new rate law for r2 (lines 8-11). It then removes species sc and reaction
r1 from the model (lines 12-13). Finally, at the end, this algorithm removes the
operator site, s (line 15).

2.4 Dimerization Reduction

Dimerization is another type of reaction, which often involves only regulatory
molecules and could thus frequently proceed very rapidly compared to the rate of
transcription initiation. Therefore, it might also be useful to abstract away these
reactions whenever possible by using a version of rapid-equilibrium constraints.
The dimerization reduction method is used to express dimer and monomer forms
of species in terms of their total concentration as follows [26]. Let us consider
a species sm that forms a dimer sd. If [st] is the total number of the monomer
molecules, then it is defined as follows:

[st] = [sm] + 2[sd]. (3)

Let Ke be the equilibrium constant for dimerization (i.e., Ke = k+/k−), then,
by assuming sm and sd are in rapid equilibrium, we have

[sd] = Ke[sm]2. (4)

Using Equations 3 and 4, we can derive the following equation:

Ke[st]
2 − (4Ke[st] + 1)[sd] + 4Ke[sd]

2 = 0. (5)

162 H. Kuwahara et al.

Solving Equation 5, we can express [sm] and [sd] in terms of [st] as follows:

[sm] =
1

4Ke

(√
8Ke[st] + 1 − 1

)
, (6)

[sd] =
[st]
2

− 1
8Ke

(√
8Ke[st] + 1 − 1

)
. (7)

As an example, consider the reactions for the species CI from the phage λ
decision network shown in Figure 6(a). This species can only effectively degrade
in the monomer form (reaction r1), but it is transcriptionally active (reactions
r3 and r4) only as a dimer (reaction r2). Using Equations 6 and 7, the reactions
r1, r3, and r4 can be transformed to r1′ , r3′ , and r4′ , respectively, with kinetic
laws that are now all expressed in terms of total amount of CI as shown in
Figure 6(b). Note that the dimerization reaction r2 is eliminated completely.

CI ��
r

������������������
r

���������������

r1: kd·[CI] r2: k+·[CI]2−k−·[CI2]��
p

��
CI2

m

����������������
m

����������������

r3: f3(··· ,[CI2],···) r4: f4(··· ,[CI2],···)

(a)

r1′ : kd· 1
4Ke

√
8Ke[CIt]+1−1 CIt

r��

m

�����������������
m

�����������������

r3′ : f3(··· ,
[CIt]

2 − 1
8Ke

√
8Ke[CIt]+1−1 ,···) r4′ : f4(··· ,

[CIt]
2 − 1

8Ke

√
8Ke[CIt]+1−1 ,···)

(b)

Fig. 6. Dimerization reduction: (a) original model, and (b) abstracted model

The algorithms to perform dimerization reduction are shown in Figure 7.
First, Algorithm 7 is used to identify a dimerization reaction. It checks each
reaction, r, using Algorithm 8. A dimerization reaction must include exactly
one reactant, one product, and no modifiers (line 1). It must also have a rate
law of the right form (line 2). The dimerization reduction also requires that the
monomer is never used as a modifier, and that there is only one reaction (this
one) which produces the dimer (lines 3-4). If these conditions are met, a record
is made of the monomer species sm, dimer species sd, and equilibrium constant

Automated Abstraction Methodology for Genetic Regulatory Networks 163

k+/k− (line 5). The transformation is performed by Algorithm 9. First, a new
species st is introduced into the model with an initial concentration [sm]0+2[sd]0
(lines 1-2). Next, sm is replaced by st in each reaction in which sm is a reactant,
and the rate law is updated as described in Equation 6 (lines 3-6). The dimer
sd is also replaced with st in the reactions that it appears as a reactant or
modifier, and the rate law is updated using Equation 7 (lines 7-11). Finally,
the species sm, the species sd, and reaction r are all removed from the model
(lines 12-14).

Algorithm 7. Dimerization reduction
Model DimerReduction(Model M)

1: for all r ∈ Rrev do
2: C ← DimerConditionSatisfied(M, r)
3: if C �= nil then M ← DimerTransform(M,r, C)
4: end for
5: return M

Algorithm 8. Check the conditions for the dimerization reduction
Record DimerConditionSatisfied(Model M, Reaction r)

1: if (|Sr
r| �= 1) ∨ (|Sp

r | �= 1) ∨ (|Sm
r | �= 0) then return nil

2: if (K(r) �= “k+[sm]2 − k−[sd]”) then return nil
3: {sm} ← Sr

r and {sd} ← Sp
r

4: if (|Rm
sm | �= 0) ∨ (|Rp

sd
| �= 1) then return nil

5: return 〈sm, sd, k+/k−〉

Algorithm 9. Perform the dimerization reduction transformation
Model DimerTransform(Model M, Reaction r, Record 〈sm, sd, Ke〉)
1: M ← addSpecies(M,st)
2: [st]0 ← [sm]0 + 2[sd]0
3: for all r′ ∈ Rr

sm do
4: M ← addReactant(M,st, r

′, E(sm, r′))

5: replace [sm] with 1
4Ke

(√
8Ke[st] + 1− 1

)
in K(r′)

6: end for
7: for all ∀r′ ∈ (Rr

sd
∪Rm

sd
) do

8: if r′ ∈ Rr
sd

then M ← addReactant(M,st, r
′, E(sd, r′))

9: if r′ ∈ Rm
sd

then M ← addModifier(M, st, r
′)

10: replace [sd] with [st]
2
− 1

8Ke

(√
8Ke[st] + 1− 1

)
in K(r′)

11: end for
12: M ← removeSpecies(M,sm)
13: M ← removeSpecies(M,sd)
14: M ← removeReaction(M,r)
15: return M

Fig. 7. Algorithms to perform dimerization reduction

164 H. Kuwahara et al.

2.5 Irrelevant Node Elimination

In a large system, there may be species that do not have significant influence on
the species of interest, Si. Even when all the species in the original model are
coupled, after applying abstractions, a species may no longer influence the species
of interest. In such cases, computational performance can be gained by removing
such irrelevant species and reactions. Irrelevant node elimination performs a
reachability analysis on the REB model and detects nodes that are not used to
influence the species in Si. For example, in Figure 8(a), s6 is the only species in
Si. Therefore, the production and degradation reactions of s6, r3 and r2, must
be relevant. The reaction r3 uses s3 as a reactant and s2 as a modifier, so these
species are relevant too. Since s2 is relevant, the degradation reaction of s2, r1,
is also relevant. This reaction uses s1 as a modifier, so s1 is relevant. Using these
deductions, irrelevant nodes elimination results in the reduced model shown in
Figure 8(b).

Whereas the irrelevant node elimination guarantees that all the removed nodes
are irrelevant to the species in Si by statically analyzing the structure of the
model, there may still be nodes in the transformed model that can be safely
removed without any significant effect on the model. In such cases, a more ex-
tensive and expensive dynamic analysis such as sensitivity analysis [27,28] can
be applied to further reduce the model complexity.

s1

m

s2

r

����
��

��
�� m

��
��

��
��

s3

r

��

s4

r

��

s5

m

r1 r2 r3

p

��

r4

p

��

r5

p

�����	
��s6

r

���������� m

��������
s7 s8

s1

m

s2

r

����
��

��
�� m

��
��

��
��

s3

r

��
r1 r2 r3

p

�����	
��s6

r

����������

(a) (b)

Fig. 8. Irrelevant node elimination: (a) original model and (b) after reduction

2.6 Top Level Abstraction Algorithm

The top level algorithm that combines all the abstraction methods described
above is shown in Figure 9, and it is implemented within the tool REB2SAC [29].
The seven abstraction methods, irrelevant node elimination (line 3), modifier
constant propagation (line 4), rapid equilibrium approximation (line 5), stan-
dard quasi-steady-state approximation (line 6), operator site reduction (line 7),
similar reaction combination (line 8), and dimerization reduction (line 9), are
applied iteratively until there is no change in the model. The irrelevant node
elimination and the modifier constant propagation are applied first to reduce the
complexity of the model without compromising accuracy. The rapid equilibrium
approximation is applied before the standard quasi-steady-state approximation
so that, whenever the model contains patterns that match the conditions for

Automated Abstraction Methodology for Genetic Regulatory Networks 165

both methods, the former has precedence in order to reduce the complexity of
the reaction rate laws. The similar reaction combination is applied right after
the operator site reduction to immediately combine the structurally similar re-
actions that are often generated by operator site reduction. The dimerization
reduction is placed after operator site reduction since an operator site with a
dimer molecule as a transcription factor cannot be reduced otherwise.

Algorithm 10. Top level abstraction algorithm
Model AbstractionEngine(Model M)

1: repeat
2: M ′ ←M
3: M ← IrrelevantNodeElim(M)
4: M ←ModifierConstantProp(M)
5: M ← RapidEqApprox(M)
6: M ← StandardQSSA(M)
7: M ← OpSiteReduction(M)
8: M ← SimilarReactionComb(M)
9: M ← DimerReduction(M)

10: until M ′ = M
11: return M

Fig. 9. Top level abstraction algorithm

2.7 Abstraction Results

As a case study, we built a REB model of the phage λ decision circuit based on
the one described in [3]. Phage λ is a virus that infects E. coli cells. This virus
replicates either by making new copies of itself within the E. coli and lysing
the cell (i.e., lysis) or embedding its DNA into the cell’s DNA and replicating
through cell division (i.e., lysogeny). The goal of the analysis is to determine
the probability that lysogeny is chosen under various conditions. For example, it
has been shown experimentally that the probability of lysogeny increases as the
multiplicity of infection (MOI)—the number of phages simultaneously infecting
the same cell—increases [30]. The initial REB model includes 55 species and 69
reactions, and the set of interesting species, Si, includes CI and Cro. This model
is available with the REB2SAC tool [29].

After applying the reaction-based abstraction methods as specified in Sec-
tion 2.6, the REB model is reduced to only 5 species and 11 reactions as shown
graphically in Figure 10. This figure shows the biological gene-regulatory net-
work of the phage λ lysis/lysogeny decision circuit, and it is quite similar to
the high-level hand-generated diagram in [3]. The structure of this graph, how-
ever, is automatically generated using abstractions from the low level model.
This highlights the additional benefit of abstraction in facilitating a higher level
view of the network being analyzed, since it removes the low level details such
as intermediate species and reactions which involve them. This makes it easier
to visualize crucial interactions including identification of the key species which

166 H. Kuwahara et al.

ProdCIII
p �� CIII

r ��

��
��

m

DegCIII

ProdCro
p �� Cro

r ��

����

m

����
m

����

��
m

����

��m

����

��
m

DegCro

ProdN
p �� N

r

��

��
m

��

m

PREProdCI

��
p �� CI

r ��

����

m

����

��

m

����m ����

��

m

DegCI

DegN ProdCII
p �� CII

r ��

��
m

��
��

m

DegCII ProdCI

�� p
��

Fig. 10. Structure of the abstracted model of the phage λ developmental decision
gene-regulatory pathway

ultimately inhibit and/or activate transcription. The REB2SAC tool can also out-
put the abstracted model as SBML to allow it to be visualized or further ana-
lyzed using any SBML compliant tool. Finally, REB2SAC can output the model
in presentation MathML to visualize complex rate laws using an XML/HTML
browser.

Both the original model and the abstracted one are simulated for 10,000 runs
using the same simulator, an optimized implementation of SSA within REB2SAC,
on a 3GHz Pentium4 with 1GB of memory to estimate the probability of lysogeny
with a reasonable statistical confidence as well as to measure the speed-up gained
via abstractions. Each simulation is run for up to one cell cycle while tracking
the number of molecules of CI and Cro. If the number of CI molecules exceeds
328 (i.e., 145 CI dimers) before the number of Cro molecules exceeds 133 (i.e.,
55 Cro dimers), then the simulation run is said to result in lysogeny [3]. The
simulations are run for MOIs ranging from 1 to 50. While the simulation of the
original REB model takes 56.5 hours, the abstracted model only takes 9.8 hours,
which is a speed-up of more than 5.7 times. Figure 11 shows the probability of
lysogeny for MOIs from 0 to 10 for both the original REB model and the ab-
stracted one. The results are nearly the same, yet with a substantial acceleration
in runtime.

3 N-ary Transformation

To further improve the analysis time, the reduced REB model can be converted
into a SAC model using the n-ary transformation. This section first describes
the SAC model formally. Next, it describes each of the steps of n-ary transfor-
mation in turn. Then, it describes how the resulting SAC model can be analyzed
using an iterative Markov chain method. Finally, it presents results using n-ary
transformation on the phage λ model.

Automated Abstraction Methodology for Genetic Regulatory Networks 167

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

of
 L

ys
og

en
y

Multiplicity of Infection (MOI)

Original REB Model
Abstracted REB Model

Fig. 11. Comparison of simulation results before and after abstraction where each data
point has a margin of error of less than 0.01 with a 95 percent confidence

3.1 Stochastic Asynchronous Circuit Model

The SAC model is a continuous-time discrete-event system with which one can
efficiently analyze the stochastic behavior of each species. So, instead of tak-
ing a computationally expensive approach of monitoring every single molec-
ular state, the SAC model keeps track of aggregate levels of molecular counts.
This is inspired by switch-like behaviors often seen in genetic regulatory
networks.

Definition 2. A SAC Model is specified using a 3-tuple 〈B,b0,C〉 where B =
〈B1, . . . , Bn〉 is a vector of Boolean random variables, and thus B(t) repre-
sents the system state at time t. The initial state b0 contains the values of
all the Boolean variables at time 0. C is the set of guarded commands that
change the values of the Boolean variables. Each guarded command, cj, has a
form:

Gj(b)
qj−→ Bi := vj

where the function Gj(b) : {0, 1}n
→ {0, 1} is the guard for cj when the system
state is b, qj is the transition rate for cj, and vj ∈ {0, 1} is the value assigned
to Bi as a result of cj.

168 H. Kuwahara et al.

A guard is a conjunction of literals of the form (Bi = vj). Each guarded
command, cj , is required to change the state of some Boolean variable in B.
Therefore, if the state of Bi is changed to vj by cj , then the guard must include
the term (Bi = (1 − vj)). If the system state is b at time t (i.e., B(t) = b), cj

can be executed if its guard is satisfied (i.e., Gj(b) = 1). The result of executing
the guarded command in time step τ is that a new state is reached in which
Bi(t + τ) = vj and for all k �= i, Bk(t + τ) = Bk(t). The probability that cj is
executed within the next infinitesimal The probability that, given the state is b,
cj is executed within the next infinitesimal time step dt is:

P (cj , dt | b) = Gj(b) · qj · dt.

Consequently, the probability that no transition is taken within the next time
step dt is:

1 − (
∑|C|

l=1 Gl(b) · ql · dt).

A stochastic simulation of a process described using a SAC model begins in
the state b0 at time 0 and selects either a guarded command to execute or no
guarded commands to execute in a small time step Δt using the probability
functions just defined. If a guarded command is executed at time t1, then the
system moves to a new state B(t1) = b1. It then recalculates all the transition
probabilities, and continues until terminated.

This simulation process is inexact and inefficient since Δt is not a true in-
finitesimal yet for a sufficiently small Δt most simulation steps do not result in a
state change. Therefore, the exact SSA which skips over the time steps where no
state change occurs can be used instead [31,32] by using the expression Gj(b) ·qj

as the propensity function for the guarded command cj when the system state
is b. In addition to stochastic simulation, a SAC model can be analyzed by
constructing a homogeneous continuous-time Markov chain and applying an as-
sociated efficient analysis method [33]. This is the approach that is taken in this
paper to analyze the phage λ decision circuit.

3.2 Reaction Splitization

The n-ary transformation requires the REB model to satisfy the property that
all reactions should have either one reactant or one product, but not both. This
is often the case after applying the abstractions described earlier as it is for
the phage λ model. If this property does not hold, however, it can be made to
hold using reaction splitization. One form of reaction splitization is called single
reactant single product reaction splitization, which splits an irreversible reaction
with a single reactant and a single product into an irreversible reaction with no
reactant and a single product and an irreversible reaction with a single reactant
and no product. In order to illustrate this transformation, consider the reaction
shown in Figure 12(a) that converts species s1 into species s2 with a rate law

Automated Abstraction Methodology for Genetic Regulatory Networks 169

s1

r

��
f([s1])

p

��
s2

s1

r

����
���

���
m

���
���

��

f([s1])

p

��

f([s1])

p

��
() s2

(a) (b)

Fig. 12. Reaction splitization: (a) original reaction and (b) split-up reactions

f([s1]). After splitization, this is transformed into the two reactions shown in
Figure 12(b). This includes a degradation reaction for s1 and a production reac-
tion for s2, with the same rate law. In addition, there is also multiple reactants
reaction splitization to split a reaction with multiple reactants into multiple re-
actions with a single reactant, and multiple products reaction splitization that
splits a reaction with multiple products into multiple reactions with a single
product.

3.3 Boolean Variable Generation

Let X be a random variable representing the state of species s. Our method
partitions the states of X into an ordered set A : (A0, A1, . . . , An) such that,
∀i. Ai = [θi, θi+1) where θ0 = 0, and θn+1 = ∞. We call A0, . . . , An critical
intervals, and θ0, . . . , θn critical levels. Depending on the nature of the appli-
cation, these critical levels can be either specified by the user and taken to be
model inputs—such as might be the case when our system is utilized by an
expert already familiar with the in situ behavior of the underlying regulatory
network—or estimated automatically from the kinetic rate laws as described
next.

In order to identify the critical levels of species s, our method first automati-
cally finds all reactions with kinetic rate laws that include a denominator term
of the form K[s]n. For each such reaction, one critical level of s is generated with
the form n

√
a/(K − aK) where a is an amplifier in the range [0.5, 1.0) selected

by the user. Figure 13(a) shows two reactions which have kinetic rate laws con-
taining CII terms. Assuming that a equals 0.5, these two reactions imply the
following four critical levels:

0, k9
k8

, k−2
k2·RNAP0

, and k−3
k3

.

These levels come from the fact that θ0 is by definition 0, the denominator of the
left reaction rate law in Figure 13(a) has the term k8/k9[CII], and the denomina-
tor of the right reaction rate law has two terms of this form, k2/k−2[CII]RNAP0

and k3/k−3[CII].

170 H. Kuwahara et al.

CII

m

�������������
m

��������������

k13P1totk11/k12[CIII]
1+k8/k9[CII]+k11/k12[CIII]

(kbasal
k1

k−1
+kpre

k2
k−2

[CII])RNAP0PRE0

1+
k1

k−1
RNAP0+

k2
k−2

[CII]RNAP0+
k3

k−3
[CII]

CII

m

r1: f([CII])

p

��
CI

(a) (b)

Fig. 13. (a) Critical level identification. (b) Production of CI with activator CII.

If there are n+1 critical levels, θ0, . . . , θn, for s, our method creates n Boolean
variables B1 . . . Bn with initial values b1 . . . bn in which bi = 1 if [s]0 ≥ θi and 0
otherwise. Y is a discrete random variable that denotes the state of critical levels
that species s is in. So, the relationship between Y and B1, . . . , Bn is: Y (t) = i
iff (∀j ∈ [1, i]. Bj(t) = 1) ∧ (∀j ∈ [i + 1, n]. Bj(t) = 0).

3.4 Guarded Command Generation

The guard for a reaction is derived from the Boolean variables for the species
used in that reaction. Suppose species CII is an activator in the reaction r1

for the production of CI shown in Figure 13(b). Also, suppose that three crit-
ical levels are used for CII which are (0, θCII

1 , θCII
2), and the critical levels for

CI are (0, θCI
1 , θCI

2), respectively. Since r1 is a production reaction for species
CI, the legal moves that YCI (the random variable for the levels of CI) can
take are only two: 0 → 1 and 1 → 2. The guarded commands for r1 are
below:

BCI
2 = 0 ∧ BCI

1 = 0 ∧ BCII
2 = 0 ∧ BCII

1 = 0
q1−→ BCI

1 := 1

BCI
2 = 0 ∧ BCI

1 = 0 ∧ BCII
2 = 0 ∧ BCII

1 = 1
q2−→ BCI

1 := 1

BCI
2 = 0 ∧ BCI

1 = 0 ∧ BCII
2 = 1 ∧ BCII

1 = 1
q3−→ BCI

1 := 1

BCI
2 = 0 ∧ BCI

1 = 1 ∧ BCII
2 = 0 ∧ BCII

1 = 0
q4−→ BCI

2 := 1

BCI
2 = 0 ∧ BCI

1 = 1 ∧ BCII
2 = 0 ∧ BCII

1 = 1
q5−→ BCI

2 := 1

BCI
2 = 0 ∧ BCI

1 = 1 ∧ BCII
2 = 1 ∧ BCII

1 = 1
q6−→ BCI

2 := 1

3.5 Transition Rate Generation

The final step to generate a SAC model is to assign a transition rate, qi, to
each guarded command. The random variable, X , which represents the state of
s can be approximately expressed in terms of the Boolean variables by defining
a discrete random variable, X ′, as follows:

X ′(t) = (θn − θn−1)Bn(t) + · · · + (θ2 − θ1)B2(t) + (θ1 − θ0)B1(t),

Automated Abstraction Methodology for Genetic Regulatory Networks 171

and then approximating evolution of X by the average of X ′. Taking the deriva-
tive with respect to the mean of Bi(t) results in:

∂X(t)
∂〈Bi(t)〉 ≈ (θi − θi−1).

Using this approximation, the time derivative of the mean of Bi is:

d〈Bi(t)〉
dt

=
∂〈Bi(t)〉
∂X(t)

dX(t)
dt

≈ 1
θi − θi−1

dX(t)
dt

.

Notice 〈Bi(t)〉 is a continuous variable in the range [0, 1]. By letting 〈Bi(t)〉 be
the probability that Bi = 1 at t, our method finds the transition rate functions
for Bi to move from 0 to 1 and from 1 to 0 from the rate laws of reactions
that change the value of [s]. The transition rate function of a guarded command
changing the value of Bi, which is generated from reaction r is:

f =
E ·K(r)
θi − θi−1

where E =

{
E(s, r) if s is a reactant of r

E(r, s) if s is a product of r

Finally, our method must evaluate the transition rate functions with appro-
priate values. Consider reaction r with K(r) containing X . Given that the corre-
sponding Y is i, our method uses θi as the value of X . For example, the transition
rates of the guarded commands in Figure 13(b) are derived from K(r1). Since
the derived transition rate function is f([CII])/(θCI

i −θCI
i−1), the transition rates

for the guarded commands for reaction r1 are:

q1 = f(0)/θCI
1

q2 = f(θCII
1)/θCI

1

q3 = f(θCII
2)/θCI

1

q4 = f(0)/(θCI
2 − θCI

1)
q5 = f(θCII

1)/(θCI
2 − θCI

1)
q6 = f(θCII

2)/(θCI
2 − θCI

1)

3.6 Markov Analysis

A SAC model can be efficiently analyzed using Markov chain analysis within the
ATACS tool [20]. Beginning in the initial state, b0, a transition can occur to a
new state, b1, by executing a guarded command which has its guard satisfied
in b0. A depth-first-search can be used to generate a state graph containing all
states reachable from b0. If there exists a state transition from state bi to bj due
to the execution of the guarded command ck, then this state transition can be
annotated with its transition rate, qk. The result of this annotation is that the
state graph is now a continuous-time Markov chain. This can be analyzed by first
converting it into its embedded Markov chain by normalizing each transition rate
by the sum of all the rates leaving the state resulting in a transition probability.
Finally, this embedded Markov chain can be analyzed to determine the stationary
probability distribution using an efficient iterative method [33].

172 H. Kuwahara et al.

3.7 N-ary Transformation Results

The n-ary transformation is able to automatically convert our reduced REB
model for the phage λ decision circuit into a SAC model. However, since the
species CI and Cro influence many reactions, our automated analysis finds that
10 critical levels are needed for species CI and 10 are needed for species Cro.
This is too many critical levels for the Markov chain analyzer within ATACS.
Fortunately, many of these critical levels are very close together and can be
combined with little loss in accuracy. Therefore, while we decided to use eight
Boolean variables for species CI and three for CII, we only used one Boolean
variable for each of the species Cro, N, and CIII.

We analyzed the SAC model using Markov chain analysis. The probability of
lysogeny is calculated by summing the probability of states that reach the highest
level of CI. We compare our results with both experimental data and previous
simulations performed by Arkin et al. on a complete master equation model.
The experimental results are from Kourilsky [30]. Since it was not practical to
measure the number of phages that infect any given cell, Kourilsky measured the
fraction of cells that commit to lysogeny versus average phage input (API) (i.e.,
the proportion of phages to E. coli within the population). Kourilsky performed
experiments for both “starved” E. coli and those in a “well-fed” environment.
He found that the fraction that commits to lysogeny increases with increasing
API, and that this fraction increases by more than an order of magnitude in a
starved environment over a well-fed environment.

To map simulated MOI data onto API data, Arkin et al. used a Poisson
distribution of the phage infections over the populations:

P (M, A) =
AM

M !
e−A

Flysogens(A) =
∑
M

P (M, A) · F (M)

where M is the MOI, A is the API, and F (M) is the probability of lysogeny
determined by Markov analysis. We also used this method to map our MOI
data. The results are shown in Figure 14. The individual points represent exper-
imental measurements while the lines represent simulation results. Both Arkin
et al.’s simulation and our SAC model results track the starved data points rea-
sonably well. Our SAC model results, however, are found in less than 7 minutes
of computation time on a 3GHz Pentium4 with 1GB of memory. While modern
computer technology and algorithmic improvements would greatly improve the
simulation time of Arkin et al.’s model, these results would still take several
hours to generate on a similar computer to ours. Another notable benefit of
our SAC method is that it can also produce simulation results for the well-fed
case in about 7 minutes. These results could likely not be generated even today
using Arkin’s master equation simulation method, since the number of simula-
tion runs necessary is inversely proportional to the probability of lysogeny (i.e.,
about two orders of magnitude greater in the well-fed case than in the starved
one).

Automated Abstraction Methodology for Genetic Regulatory Networks 173

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.1 1 10 100

E
st

im
at

ed
 F

ra
ct

io
n

of
 L

ys
og

en
s

Average Phage Input (API)

SAC (starved)
SAC (well-fed)

Master Eqn Simulation (starved)
O- Experimental (starved)
P- Experimental (starved)
O- Experimental (well-fed)

Fig. 14. Comparison of SAC results to experimental data

4 Conclusions

This paper presents a general methodology for systematically and automatically
abstracting the complexities of large-scale biochemical reaction-based
networks (REBs) to a reduced stochastic asynchronous circuit (SAC) repre-
sentation. It significantly facilitates efficient non-deterministic analysis of such
systems by substantially reducing the problem dimensionality in both reaction
and molecular state spaces, thus potentially allowing for both simulation time
acceleration and computability gains while facilitating a high-level view of the
network. Furthermore, since our approach allows for multiple levels of abstrac-
tion, it is broadly applicable to a wide range of biological systems and their
representations—from classical differential equation models to fully discrete and
stochastic bio-molecular pathways—including the genetic regulatory networks
upon which we have chosen to focus in this work.

As a case study, we have applied our method to the phage λ developmental
decision pathway. The preliminary results are promising. Among other things,
we are able to: (1) ascertain the internal self-consistency of our approach by
successfully cross-validating each abstraction level output against the results
of the full underlying discrete-stochastic model simulations; and (2) accurately
estimate the biologically relevant (observable) pathway selection probabilities,
which typically require substantial numbers of hours of computation time via

174 H. Kuwahara et al.

the original REB representation, yet could be computed in only minutes using
our SAC approach.

Future work includes the development of more abstraction methods, refine-
ment of the critical level assignment algorithm, and integration of a more scalable
Markov chain analyzer. We are also working on a tighter integration with other
tools for modeling and analysis of (bio)chemical networks such as BioSPICE [23].
Finally, we are applying our abstraction methodology to efficient analysis of other
systems—such as the E. coli Fim mechanism and B. Subtilis stress response
network—that may benefit from our automated abstraction methodology due
to, among others, their inherently stochastic behavior in situ.

Acknowledgments. The authors would like to thank David Dill (Stanford
University), Satoru Miyano (University of Tokyo), Hiroaki Kitano (Sony Cor-
poration), and Arkin’s research group (University of California, Berkeley) for
numerous helpful discussions.

References

1. Jong, H.D.: Modeling and simulation of genetic regulatory systems: A literature
review. J. Comp. Biol. 9(1) (2002) 67–103

2. Baldi, P., Hatfield, G.W.: DNA Microarrays and Gene Expression. Cambridge
University Press (2002)

3. Arkin, A., Ross, J., McAdams, H.: Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected escherichia coli cells. Genetics 149
(1998) 1633–1648

4. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression
in a single cell. Science 297 (2002) 1183–1186

5. Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intra-
cellular noise. Nature 420 (2002) 231–238

6. Samoilov, M., Plyasunov, S., Arkin, A.P.: Stochastic amplification and signaling
in enzymatic futile cycles through noise-induced bistability with oscillations. Pro-
ceedings of the National Academy of Sciences US 102(7) (2005) 2310–5

7. Raser, J.M., O’Shea, E.K.: Control of stochasticity in eukaryotic gene expression.
Science 304 (2004) 1811–1814

8. Kierzek, A.M., Zaim, J., Zielenkiewicz, P.: The effect of transcription and trans-
lation initiation frequencies on the stochastic fluctuations in prokaryotic gene ex-
pression. J. Biol. Chem 276 (2001) 8165

9. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A
188 (1992) 404–425

10. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics 22
(1976) 403–434

11. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo
reactions. Computational Biology 28 (2004)

12. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104 (2000) 1876–1889

Automated Abstraction Methodology for Genetic Regulatory Networks 175

13. Gibson, M., Bruck, J.: An efficient algorithm for generating trajectories of stochas-
tic gene regulation reactions. Technical report, California Institute of Technology
(1998)

14. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically re-
acting systems. Journal of Chemical Physics 115(4) (2001) 1716–1733

15. Rathinam, M., Cao, Y., Petzold, L., Gillespie, D.: Stiffness in stochastic chemically
reacting systems: The implicit tau-leaping method. Journal of Chemical Physics
119 (2003) p12784–94

16. Gillespie, D., Petzold, L.: Improved leap-size selection for accelerated stochastic
simulation. Journal of Chemical Physics 119 (2003)

17. Cao, Y., Gillespie, D., Petzold, L.: Avoiding negative populations in explicit tau
leaping. Journal of Chemical Physics 123 (2005)

18. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state
assumption: Application to the gillespie algorithm. J. Phys. Chem. 118(11) (2003)

19. Schnell, S., Maini, P.K.: A century of enzyme kinetics: Reliability of the km and
vmax estimates. Comments on Theoretical Biology 8 (2003) 169–187

20. Myers, C.J., Belluomini, W., Killpack, K., Mercer, E., Peskin, E., Zheng, H.: Timed
circuits: A new paradigm for high-speed design. (2001) 335–340

21. Berry, R.S., Rice, S.A., Ross, J.: Physical Chemistry (2nd Edition). Oxford Uni-
versity Press, New York (2000)

22. Systems Biology Workbench Development Group. (http://www.sbw-sbml.org/)
23. BioSPICE. (http://www.biospice.org/)
24. Schnell, S., Mendoza, C.: Enzyme kinetics of multiple alternative substrates. Jour-

nal of Mathematical Chemistry 27 (2000) 155–170
25. Ackers, G.K., Johnson, A.D., Shea, M.A.: Quantitative model for gene regulation

by λ phage repressor. Proc. Natl. Acad. Sci. USA 79 (1982) 1129–1133
26. Santillán, M., Mackey, M.C.: Why the lysogenic state of phase λ is stable: A

mathematical modeling approch. Biophysical Jounal 86 (2004)
27. Dacol, D., Rabitz, H.: Sensitivity analysis of stochastic kinetic models. J. Math.

Phys. 25 (1984)
28. Gunawan, R., Cao, Y., Petzold, L., Doyle, F.J.: Sensitivity analysis of discrete

stochastic systems. Biophysical Journal 88 (2005) 2530–2540
29. REB2SAC. (http://www.async.ece.utah.edu/tools/)
30. Kourilsky, P.: Lysogenization by bacteriophage lambda: I. multiple infection and

the lysogenic response. Mol. Gen. Genet. 122 (1973) 183–195
31. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem. 81(25) (1977) 2340–2361
32. Gillespie, D.T.: Markov Processes An Introduction for Physical Scientists. Aca-

demic Press, Inc. (1992)
33. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-

ton University Press (1994)

	Introduction
	Reaction-Based Abstraction Methods
	Reaction-Based Model
	Michaelis-Menten Approximation
	Operator Site Reduction
	Dimerization Reduction
	Irrelevant Node Elimination
	Top Level Abstraction Algorithm
	Abstraction Results

	N-ary Transformation
	Stochastic Asynchronous Circuit Model
	Reaction Splitization
	Boolean Variable Generation
	Guarded Command Generation
	Transition Rate Generation
	Markov Analysis
	N-ary Transformation Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

