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Abstract

Background: Differentially expressed genes are typically identified by analyzing the variation
between replicate measurements. These procedures implicitly assume that there are no systematic
errors in the data even though several sources of systematic error are known.

Results: OpWise estimates the amount of systematic error in bacterial microarray data by
assuming that genes in the same operon have matching expression patterns. OpWise then
performs a Bayesian analysis of a linear model to estimate significance. In simulations, OpWise
corrects for systematic error and is robust to deviations from its assumptions. In several bacterial
data sets, significant amounts of systematic error are present, and replicate-based approaches
overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise
can identify additional changers by assigning genes higher confidence if they are consistent with
other genes in the same operon.

Conclusion: Although microarray data can contain large amounts of systematic error, operons
provide an external standard and allow for reasonable estimates of significance. OpWise is available
at http://microbesonline.org/OpWise.

Background

Microarray measurements of gene expression have
become a popular tool for studying bacterial physiology,
and hundreds of such studies are being conducted each
year. Generally, these studies compare a treatment, either
environmental or genetic, to a control condition. After
obtaining raw hybridization intensities by scanning the
slides or chips, the next steps are to normalize the data to
remove experimental artifacts and then to identify differ-
entially expressed genes.

To assess the reliability of the microarray measurements
and to distinguish significant changers from other genes,

statisticians have analyzed the variation between replicate
experiments [1-8]. Implicitly, assessing significance by
testing replication error assumes that replication captures
all of the error in the data, and that there are no systematic
biases. However, systematic errors have been observed
due to many factors, including cross-hybridization, non-
specific hybridization, dye incorporation bias, intensity-
dependent effects, and spatial artifacts [1,9-11]. Although
normalization methods correct for some of these, system-
atic bias will likely remain; for example, most normaliza-
tion methods cannot account for cross-hybridization or
non-specific hybridization. To determine if systematic

Page 1 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/7/19
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16412220
http://microbesonline.org/OpWise
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:19

errors do remain after normalization, additional informa-
tion besides the replicates is required.

For bacterial microarray experiments, we use operons to
assess the amount of systematic error in the data. Bacterial
genes are often co-transcribed in multi-gene operons, and
genes in the same operon should, in principle, have the
same expression pattern. Although genes in the same
operon are often expressed at different levels due to the
varying stability of different segments of the mRNA, in
steady-state situations, this will not affect the ratio in
expression levels between conditions. Because most
mRNA half-lives are short (under 10 minutes [12,13]),
mRNA levels will be near steady state both in sustained
growth (e.g., log phase) or within 20-30 minutes of a
stress (e.g., heat) being applied. Thus, the steady state
approximation should generally hold, and expression
ratios should be consistent across an operon. Another rea-
son why expression patterns can vary within an operon is
that some operons have internal promoters or differential
regulation of mRNA stability that can lead to differences
in expression patterns [14]. In practice, however, genes
known to be in the same operon usually have very similar
expression patterns, and expression patterns can be used
to predict operons [15].

We assume that genes in the same operon have identical
expression patterns, and infer that differences between the
expression patterns of genes in the same operon are due to
errors, which may be systematic or not. This assumption
is somewhat conservative, because any true differences in
expression patterns between genes in the same operon
will be mistaken for errors, leading to overestimation of
the amount of systematic error and conservative assess-
ments of significance. In practice, however, this effect
appears to be slight. Because the operon structure of most
genes has not been experimentally determined, we rely on
operon predictions that are available for all prokaryotes
[16], along with estimates of their reliability [17,18].

Given this assumption about operons, we wish to esti-
mate the amount of systematic bias in the data. One sim-
ple test is to ask how often two genes that are in the same
operon have the same direction of change. However, even
if one of the genes is a confident changer, and even if the
operon prediction is highly confident, the measurement
for the other gene in the operon may be noisy. In this case,
the second gene will often report a change in the opposite
direction from the first gene because of variation between
the replicate measurements, and not because of systematic
bias. Thus, interpreting the external information from
operons requires us to have a model of the replication
e1Tor.

http://www.biomedcentral.com/1471-2105/7/19

We extend linear models for microarray data with repli-
cates [3,5,8] to include systematic errors, and present an
empirical Bayes analysis of the overall amount of system-
atic error and of the significance of each gene. Because we
have observed that even low-confidence changers show a
significant amount of agreement with operons, we do not
assume that a minority of genes are changers and that the
rest of the genes do not change [5,8]. Instead, we will
assume that all genes are changing, even if, for most of
them, the magnitude of change is small and the direction
of change cannot be determined with confidence. Conse-
quently, rather than trying to distinguish the changers
from the rest of the genes, we estimate for each gene the
posterior distribution for the gene's fold-change given the
data and the model. This can be summarized as a confi-
dence interval, as the posterior probability that the gene's
expression level went up (or down) in response to the
treatment, or as the probability that the gene changed by
1.5-fold or more.

To test our method, we conducted simulations and also
analyzed several experimental data sets. In simulations,
the method correctly estimates the amount of systematic
bias in the data and gives reasonable p-values even when
some of the assumptions of the method are violated. On
real data, we tested the agreement with operons of genes
having varying levels of significance. For both two-color
cDNA data and Affymetrix oligonucleotide data, our
method finds significant amounts of systematic error and
reports plausible p-values that show a gradual reduction
in agreement with operons as significance decreases. In
contrast, approaches based on replication error, including
non-parametric approaches [4,6,7], often show low agree-
ment with operons for confident changers (genes with >
99% probability of being true changers). Thus, methods
that ignore systematic bias may be overstating significance
dramatically.

We can also take advantage of operon structure to identify
more changers. Intuitively, if two or three genes in the
same operon all change in the same direction then they
are unlikely to be false positives, but a changer that disa-
grees with the other genes in the same operon is suspect.
Such reasoning is often used by biologists when examin-
ing microarray data. We derive a statistically sound
"operon-wise" p-value, and show that these operon-wise
p-values allow the identification of more changers at any
specified level of significance than do single-gene p-val-
ues.

Implementation

We present "OpWise," an empirical Bayes method for esti-
mating the significance of the changes reported for each
gene. The key elements of OpWise are (i) a linear error
model that includes systematic errors, (ii) an approach for
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estimating the parameters of the error model (the hyper-
parameters), and, in particular, for inferring the amount
of systematic error from the agreement within operons,
(iii) a mathematical solution for the posterior distribution
of a gene's change in expression given the data for the gene
and the parametrized error model, and (iv) an extension
to the method to take other genes in the same operon into
account when estimating the significance of each gene.

To describe the expression of each gene, we use normal-
ized expression ratios, as these should be consistent
within each operon. In practice, we use log-ratios (base 2)
rather than raw ratios. Also, instead of assuming that only
a small fraction of genes are changing, we assume that
every gene is changing (but only a small fraction of them
might be measured with high confidence). Furthermore,
we assume that there is some unknown amount of sys-
tematic error in the measurement for each gene, so that
errors will remain no matter the number of replicates.
Then, given the data for a gene i, we estimate the posterior
distribution for the true log-ratio g;. This distribution can
be summarized with a confidence interval or with the
probability P(x;> 0) that a gene's expression level went up
in the treatment condition. This probability will be near
zero for highly confident down-changers, near one for
highly confident up-changers, and near 0.5 for low-confi-
dence measurements.

A linear model with systematic errors

First consider a simple experimental design with direct
comparisons, where the samples from the conditions
being compared are hybridized to the same chip. Each
gene i has an unknown true response s, systematic error
&, and variance between replicates O'iz. The measure-
ments X; for gene i are assumed to be normally distrib-
uted around g + &, and can be summarized by the
observed mean m; = 2x;/n;, where n; is the number of
measurements for gene i, and the total squared deviance
siz =2(x;- m;)?, so that the likelihood of the data for each

gene i is given by

fx)= ﬂf(xij |\ui.01€;)
j=1

, Zj(xij_.ui_gi)z
exp(= 3

oc o'i_nl
20'1'
2 2
-, n; (W +& —m;)” +5;
:O.i”exp(_l i i 21 1) (1)
20'i
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Another popular experimental design is to compare two
types of samples separately to an external standard, such
as genomic DNA or pooled mRNA samples. In these types
of experiments, there are two sets of measured log levels
for each gene, and the difference between them gives the
log ratio. We refer to these log levels as x;; and X,;, and

summarize them with counts n,; and n,, sample means

my; and m,;, and total squared deviances 5121- and s%i. We
assume that the true variance in measurements ¥;; and
X,; is identical, and that the unknown systematic bias ¢;
affects the difference. We wish to estimate the distribution

of 1= p4y;- 1;. Using the summary statistics n; = ny; + ny; -

_ -1 -1 _ 2 _ 2 2
L Nj=(m; + ny; )L, my=my;-my, and si = sj; + §3;,

the likelihood is

2

-) (2)

2
Ni(pi +& —m) +s
2612

f(ml-,si2 |ui. 058 )o< o; " exp(—

which is the same form as the direct comparison case
except that N; has replaced n; in the exponential.

In either case, we use the conjugate prior to make the
problem analytically tractable (as in [5,8]). We first

assume that the distribution of 6,= 1/67 follows a chi-

squared distribution (Eq. 3). Given Giz for a gene, we
then assume that the true mean g, is normally distributed
with variance proportionate to Giz. This assumption fits
our data better than the alternative assumption of a fixed
variance of y; across all genes (see Results), and previous
work also used this proportionality [8]. We use the same
proportionality for the systematic error &. Hence, our

prior is:

01' E1/0'1'2

0; o g2 (v+1)

& ~ N(0,—) (3)

with hyperparameters «, v, £ and y. 1/« is the scale of the
chi-squared, v + 1 is its degrees of freedom, 1/4 deter-
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mines the amount of true changes in expression, and 1/y
determines the amount of systematic error.

We assume that the true means for the genes are inde-
pendent, except that genes in the same operon have the
same 6, and y; (but independent bias ¢). Genes in the
same operon are co-regulated, so y;should be similar. The
assumption that ¢ is identical is required because in our
model ; depends on 6, the effectiveness of this assump-
tion will be tested in the Results. Because operon predic-
tions are only 80-90% accurate, we use a method that
estimates the probability P(Operon;;) that two adjacent
genes are co-transcribed [16], and treat the actual state of
each potential operon pair as an unknown random varia-
ble. For example, the prediction method might estimate
that two genes have a 90% probability of being in the
same operon; in our model, we use this estimate as the
true probability. We use only the likely operon pairs
(those with P(Operon;;) 2 0.5).

Solving a simplified model

We first describe how to solve a simplified model with sys-
tematic errors removed, so that y = © and thus all ¢ = 0.
We need to estimate the hyperparameters from the data,
so that we have a fully specified prior distribution, and
then we need to infer the posterior distribution of the log-
fold-change y; for each gene.

Estimating the hyperparameters

In this simplified model, we need to estimate the prior
distribution for 6, (or Giz ), which is determined by the
scale yand degrees of freedom v, and then the scale of var-
iation for the true log-ratio y; given the variance Gl-z,

which is given by 1/4. Although we assume that z; is nor-
mally distributed for all genes, instead of being allowed to
vary for a minority of genes, the variation between repli-
cates in our model is the same as in [8]. As discussed by
[8], logs siz (the log of the squared deviances) is approxi-
mately normally distributed, and its mean and variance
can be written analytically. By fitting the hyperparameters
a and v to the observed mean and variance of log 51-2 . [8]

derived the following estimator:

n; —1 n; —1
e =logs! —y(=—) +log(~—)
(V1 _2 Neres (i1
(——) = mean{(e; —e)".————v/'( )}
2 ! N gones =1 2
_ v+1 v+1
=exp{e +y(—)-1lo 4
T - eplerv(—) ~log(—-)) (4)
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where () is the digamma function, /() is the trigamma
function, and e is the mean of the ¢;. v can be obtained

by inverting the trigamma function, which can be pre-
formed numerically by Newton iteration [8]. This leads to
an estimate for « as well, and specifies the prior distribu-

tion of the true variances 0',-2 for each gene (Eq. 3).

We then find the maximum likelihood estimate of S,
which describes the prior distribution of the true means

,uiz for each gene (Eq. 3). The likelihood of the data is

fiis) =TT fmi,5?)

=TT [ d6:f©)]” duif (e |6 mi 57 1:.6)

v+ni+1

b ~[(x+$i2+mi2‘w ' (5)
B+N; B+N;

=11

1
where for direct comparison experiments, N; = n,. This
equation can be viewed as a product of t-distributions for
the posterior probabilities of each gene's measurements.
We choose f to maximize the (logarithm of) this likeli-
hood, using a Newton iteration method (nlm in the R sta-
tistics package: http://www.r-project.org/).

Significance of individual genes
Given estimates for the hyperparameters and the observed

mean m; and total squared deviance siz for a gene i, the

posterior probability distribution for g is given by

f(,ui

mis? o 3 (0001 (w0, ) (201 )

v+n;

”(a+ﬁﬂi2+Ni(/~‘i_7"i)2+51‘2)_ o (6)

which is a ¢ distribution with

mi-Ni
mean =
B+N;
a+siz+miz-Ni-%
variance = !
(B+N;)-(v+n;+1)
df =v+n;+1 (7)

Intuitively, this distribution represents "shrunk" estimates

of the mean and variance. ml2 appears in the estimate of
the variance 0',-2 because ml2 contains information about

the variance (in our model the expectation of ,uiz is o_iz /

/). The degrees of freedom for this t distribution includes

Page 4 of 16

(page number not for citation purposes)


http://www.r-project.org/

BMC Bioinformatics 2006, 7:19

both the observations n; and the prior knowledge about

the variance v.

Given this posterior distribution, we can use the standard
t test to answer questions about the confidence of meas-
urement for gene i, e.g., to give a 95% confidence interval
for the log-change u; or the posterior probability that the
gene went up (P(g > 0)).

Accounting for systematic errors

The key advantage of our approach is to use biological
knowledge (i.e., operon predictions) to take systematic
errors into account. By definition, these systematic errors
will not be eliminated by increasing the number of repli-
cate measurements, but their size can be estimated from
the variation between genes in the same operon. In this
section, we add systematic errors to the above model (y <
©, &+ 0) and describe how to account for such bias. Spe-
cifically, we show how to estimate the amount of bias and
how take the bias into account when assessing signifi-
cance.

Estimating the parameters

If we ignore the distinction between systematic error ¢;
and true variation y;, then we can replace g with u; = g+

&. The distribution of u; is given by

i oag o oa)

1 .1 1 1
=N[O,—-(—+;)]=N[O,W] (8)

6; B
where 1/4'= 1/ + 1/y, so that the form of the distribution
of m; for a model with systematic errors is the same as that

for a model without systematic errors, except that we
replace fwith ' The distribution of siz is not affected by

systematic errors. Thus, we can estimate ¢, vand £’ using
the method for the simplified model.

We then find the maximum likelihood estimate of y,
which controls the amount of bias, by using our assump-
tion that genes in the same operon will have the same val-
ues of y;and of 6= 1/ O'iz . The total likelihood of the data

can be decomposed into terms for individual genes and
pairwise terms for operon pairs:

f(fcu])

(9)
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We have already taken into account the effect of y on the
single-gene likelihoods f( X; ) by introducing £, which is
now being held constant, so these terms do not need to be
considered. To derive an equation for the pairwise likeli-
hood ratios, we first note the possibility that the operon
prediction is incorrect, in which case the genes are inde-
pendent and the likelihood ratio is 1:

fG%)
W =1- P(Operonl-j)
f(x;, X; | Operon;; )
f(x)- f(x))

(10)

+P(Operon;;)-

The pairwise likelihood ratio for the operon case can be
derived from

( ‘Opmn ) j doyf (0 )|~ duf (1)

'f(musi Mo ij)'f(m]rsj M, ij) (11)
J. do;f (6 )~ duif (u;)- f(mirsiz‘:uirei) (12)
f(mizsiz\#izei):fwdgif(gi)'f(mi’Siz\#iIGirfi) (13)
to give
f(ici,icj‘Operonij)_ o *%' y
F(E)-F(5) _(2) JWNi+7)-(Nj+7)

[ B JBEN)(B+N;)
ﬁ+N;-+N;- B’

1_( V+Yl,‘;nj+l )F(L;l) (Xl] /2)_‘/*"‘;’"1”

' v+n;+1 v+n;+1 —vni+l _venjHl
F( 2 )F( 2] ) (Xi/z)_ 2 (X]/z) 2

where

F (15)

Xi =0(+sl~2+m12-Ni-,—
B'+N;

and similarly for j, and

, 12
2, 2 N 2N 2 (mi'Ni+mj'Nj)
Xij=a+5i+5j+Ni'mi +N]m1—% (16)
B+N;+N;
and

(17)

Ni =Ny )_1
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and similarly for j. Although much of Eq. 14 has no sim-
ple intuitive explanation, and unfortunately the constant
terms are required (e.g. see Eq. 10), the (X/2)-4/2 terms can
be viewed as t distribution forms for the joint probability
f(X;, X;|Operony) divided by similar forms for the inde-

pendent probabilities f{ X; ) and f( X; ).

Given this solution for the likelihood of the data, we can
use a Newton iteration method to find the value of y that
maximizes the product of the pair-wise likelihood ratios
given by Eq. 10.

Significance of individual genes
If we ignore the information from other genes, then the
posterior distribution of x;is given by a t distribution with

mean =———
B+N;
oc+si2+mi2-N; ~ﬂ/(N;+ﬁ)
(ﬂ+N;)~(v+ni+1)
df =v+n;+1 (18)

variance =

This is the same as case without systematic bias except that
N;, which describes the amount of data and hence the

reduction in uncertainty due to replication, has been

replaced by the smaller term N, 1 .

Significance taking operons into account

Although the method as described so far uses operon pre-
dictions to estimate the hyperparameters, it uses only the
information for each gene when computing p-values. We
will refer to these as "single-gene" p-values. In this section,
we describe 'operon-wise" p-values that use information
from other genes in the same operon to improve our esti-
mates of the significance of each gene. As we will show in
the Results, using this additional information often allows
increased confidence in the measurements.

First, assume that we have two genes i and j that are
known to be in the same operon, with the same
(unknown) z4;and 6; but with differing biases &, &. Given
measurements for the two genes, the posterior distribu-
tion for ;s a t distribution with

2
' ’ N.-m;+N.-m;
a+st+s? +N;-m? +N:-m? —w
L v ) B+N;+N;

variance =

(v+ni+nj+1)»(B+N;+N;)
df =v+n;+n;+1 (19)
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It is straightforward to extend this formula to three or
more genes.

In practice, operon predictions are uncertain, and we need
to take this uncertainty into account in estimating confi-
dence. We use only the adjacent pairs that are predicted to
be in the same operon (those with P(Operon;;) > 0.5), as
non-adjacent pairs are less reliable. In the most compli-
cated situation, we have genes i and k on either side of our
target gene j and four possible cases: singleton transcript j,
two-gene operon ij, two-gene operon jk, or three-gene
operon ijk. The posterior distribution of 4 is then a mix-
ture of the corresponding four posterior distributions, and
a specific probability such as P(;> 0) is determined from
a linear combination of the probabilities from four ¢ tests.

To determine the weight of the terms in the mixture, we
do not use the input probabilities P(Operon;;) and P(Oper-
ony,). Instead, we use the posterior operon probabilities
given the data. That is, we use the microarray data to help
estimate the likelihood that a pair of genes are co-tran-
scribed. Using the posterior operon probabilities gives the
rigorously correct posterior distribution for ; (derivation
not shown). Using the posterior operon probabilities also
prevents the method from asserting that a gene went
down when it in fact went up but other genes in the
operon went down, because in this situation the posterior
probability of the operon will be low.

Using Bayes' law, these posterior probabilities P(Oper-

oni]-| X;, ch ) can be obtained from

P(Operonii‘a'ci,fci) ~ P(Opem”ij) f(:"ci,a'cj ‘Operoni]v)
3?,-,9?]-) P(—Operon; ) f(%)- f(%;)
where P(Operon;;) is the prior probability and the formula
for the ratio on the right was given in Eq. 14. Given the
individual pair probabilities and the mixture of four cases
discussed above, the weight for each case is just its proba-
bility. For example, the weight for the three-gene operon
case is

(20)
P ( —Operon;;

P( OpeTOT’lijk ‘fci,fcj,fck )

=P(Oper0n,'j‘fci,a?j)~P(Operonjk‘3?j,?ck) (21)
Results

We tested OpWise on four data sets collected with a vari-
ety of measurement platforms (both glass sides and
Affymetrix chips) that used different methods of control-
ling systematic bias (multiple probes per gene or dye
swap) and from several different bacteria: With these data
sets, we first used simulations to test whether OpWise fit
the data and whether OpWise was robust to deviations

Page 6 of 16

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:19

from its assumptions. We then tested for systematic bias
in the real data and examined significance estimates from
OpWise and other methods. Finally, we tested whether
operon-wise tests were more powerful than single-gene
tests.

Data sets

o dvSalt30 - Desulfovibrio vulgaris salt shock at 30 minutes
(Z. He and J. Zhou, personal communication). This data
was collected using two-color glass slides with 70-mer
probes. The experiment was an indirect comparison
through a genomic control. There were three biological
replications for each condition, measured with one slide
each, and two spots per gene per slide, for a total of six
replicate measurements for each gene and condition.

® ecox — A comparison of aerobic and anaerobic log-phase
growth in Escherichia coli (GEO accession GDS680, [19]).
This data was from Affymetrix oligonucleotide chips with
three or four replicate hybridizations for each of the two
conditions.

e shCold5 - Shewanella oneidensis cold shock at 5 minutes
(Z. He and J. Zhou, submitted). This data was a direct
comparison of two-color glass slides using cDNA probes.
There were five biological replicates with one slide each
and two spots per gene per slide (10 measurements per
gene total), but no dye swap (the same dyes were used for
the control and treatment samples throughout).

e shHeat5 - Shewanella oneidensis heat shock at 5 minutes
[20]. This data was also a direct comparison of two-color
cDNA probes. There were three biological replicates, with
two replicate slides each and two spots per gene per slide
(12 total measurements per gene), and with dye swap
(Cy3 dye was used for the treatment in half of the slides
and for the control in the other half of the slides).

For the two-color direct comparison data sets (shCold5
and shHeat5), we performed intensity-dependent and
then spatial normalization on each slide. Specifically, we
first used a locally smooth estimator to remove intensity-
dependent effects and then subtracted the median from
each sector, similar to the recommendations of [6]. For
the indirect comparison data set (dvSalt30), we treated
the ratio of intensities between the channels correspond-
ing to cDNA and to genomic DNA as a raw expression
level. We first performed a global normalization for each
slide so that the total expression level was the same for
each slide, and then computed the average of the log-
expression levels across slides from the two conditions.
We then applied the intensity-dependent and spatial nor-
malization approaches to these log-levels. For all three of
these data sets, we considered the different spots for each
gene as independent sets of replicates. There was little dif-

http://www.biomedcentral.com/1471-2105/7/19

ference between within-slide and between-slide variance
(data not shown). For the Affymetrix data set (ecox), the
data we downloaded had already been normalized with
dChip [21], so we used the normalized expression levels
provided; to prevent small values of expression level from
giving extreme outliers for log ratios, we added a small
constant (5) to the expression levels before taking a loga-
rithm.

For each data set, we also performed 50 simulations using
the parameters estimated for that data set by OpWise.
Each simulation had the same proportion of missing data
as the corresponding data set. For operons, we randomly
assigned adjacent genes on the same strand to be in the
same operon or not with the probabilities given by the
prediction method, but only if the probability was 0.5 or
greater. With these simulations of the OpWise model, we
were able to test our assumptions about the distribution
of means and variances. To emulate the heavy tails in ecox
(see below), we performed 50 simulations where 10% of
the genes had much higher variation in the mean (a much
lower f) than the other genes. Finally, to test our assump-
tions that (i) the true mean and true variance are corre-
lated and (ii) the true variance is correlated within each
operon, for each data set we performed 50 "uncoupled"
simulations where the mean was independent of variance
(the mean was normal with a fixed width) and genes in
the same operon had independent variances.

Fit of model to data

To see how well the model fit the data, we inferred the
hyperparameters for each data set, used these parameters
to create simulated data, and compared the simulated
data to the original data sets. The model's inverse chi-
square distribution gave an excellent fit to the observed

distribution of squared deviance siz [see Additional file

1]. The simulated distribution of observed means had
heavier tails than a normal distribution, due to the wide
spread of deviances. The distribution of means fit the data
fairly well for three of the data sets, but for the ecox data
set, the true distribution had even heavier tails [see Addi-
tional file 1].

To test our assumption that the variation in the true
means depends on the true variances, we compared the
correlations of observed means and squared deviances in
the real data to simulations using the OpWise model and
also using an uncoupled model in which the means and
variances were independent. The observed mean and
squared deviance were much more correlated than in the
uncoupled model, except in the shCold5 data set [see
Additional file 2]. Similarly, within each operon the
squared deviances were significantly correlated [see Addi-
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Accuracy of p-values in simulations. (A) A typical simulation matching the OpWise model. The solid line shows the esti-
P(u; >0
mated log odds for each gene (log%) as a function of the "ideal" log odds based on the true values of the hyper-
Py >

parameters. The slope is from linear regression with the intercept fixed at zero. (B) Slopes from 50 simulations for each data
set's hyperparameters. The boxes show the first and third quartiles and the medians, the whiskers show the most extreme
point within 1.5 times the inter-quartile range of the box, and the points indicate outliers. (C) A typical "uncoupled” simulation
where means and variances were independent. We sorted the genes by their estimated log odds into 10 bins of equal size. For
each bin, a point shows the true log odds (from the number of genes with ;> 0 and g < 0) and the average of the estimated
log odds. Logistic regression gave a slope of 0.97 (solid line). (D) Slopes from 50 uncoupled simulations for each data set and
from 50 heavy-tailed simulations for the ecox data set. The dashed lines in (A) and (C) show x =y.
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Table I: Systematic bias in four biological data sets.

http://www.biomedcentral.com/1471-2105/7/19

dvSalt30 ecox shHeat5 shCold5
Typical bias 0.25 0.37 0.88
Bias/signal (%) 70.4% 19.6% 49.9% 86.9%
Bias/replication error (%) 72.7% 35.8% 143.1% 199.1%
Bias/total (%) 52.4% 15.8% 47.2% 74.6%
Significance of bias
Likelihood ratio 1.74e+02 9.38e+00 |.48e+03 1.81e+03
p-value <1077 <103 < 10-646 < 1078

The typical size of the bias in the apparent log2-ratio is the square root of its variance, or ./ E(l/@i -¥)) , where E(1/0i) = a/(v - 1). The bias over

the signal is the square root of the ratio of variances (/ 3 /7 ). The bias over the replicate error is also the square root of the ratio of variances

(+/1/7 ), and considers a single measurement (is not divided by the number of replicates). We also report the typical bias divided by the standard

deviation of the observed log-changes mi. To show that the bias is statistically significant, we compared the likelihood ratio of the best-fitting model

given systematic error to that without (with y = ), using Eq. 10. Because we are testing whether 7 lies at a boundary, in the absence of bias the
distribution of 2-log(ratio) approximates a 50:50 mixture of two chi-squared distributions with 0 and | degrees of freedom [26].

tional file 2]. However, the correlations were generally
weaker than in the simulations, indicating deviations
from the assumptions.

Robustness of OpWise in simulations

To test OpWise, we created simulated data sets based on
our statistical model. We wanted to verify that the esti-
mated hyperparameters were accurate enough to give rea-
sonable p-values. Because OpWise uses operons to
estimate the overall reliability of the measurements, we
also hypothesized that OpWise would be robust to the
modest deviations from its assumptions. In particular,
OpWise assumes that the variance in the true change of
each gene depends on the variance of measurement for
that gene. Because we found a weaker-than-expected rela-
tionship between observed deviances and means, we per-
formed "uncoupled" simulations where the true means
and variances were uncorrelated. Our statistical model
also uses normal distributions. Although different genes
can have widely varying variances of measurements,
which allows the observed means to have somewhat
heavy tails, even heavier tails were observed for the ecox
data set. So, we also conducted heavy-tailed simulations
(see Methods).

We examined the single-gene estimates of P(x;> 0) for the
simulated data (z; is the true log-change for gene i). For
the simulations using the OpWise model, we compared
these p-values computed with estimated hyperparameters
to "ideal" p-values computed with the true hyperparame-
ters. For the "uncoupled" simulations with £ independent
of o;, and for the heavy-tailed simulations, we compared
the p-values to the actual sign of x; for each gene.

When comparing the log odds of the estimated p-values to
the log odds of the ideal p-values, we consistently

observed a strongly linear relationship, with correlation
coefficients above 0.9999 (see Figure 1A; logodds (p) =

log% ). In other words, the ordering and shape of the
significance values was not affected, but the overall scale
of significance could be. To summarize this linear rela-
tionship between the two sets of significance estimates,
we used the slope of the ideal log odds as a function of the
estimated log odds. As shown in Figure 1B, most simula-
tions had slopes very close to the ideal value of 1.0. In a
total of 200 simulations across 4 data sets, the most
extreme aggressive slope was 1.12 (for shHeat5). This cor-
responds to reporting P(x > 0) = 0.964 when the true P =
0.95.

For the uncoupled and heavy-tailed simulations, which
violated the assumptions of our model, we did not have
ideal p-values to compare to, so we instead used logistic
regression (glm in R, http://r-project.org) to estimate the
slope. Logistic regression identifies the multiplier for the
estimated log odds that best fits the observed pattern of
whether g > 0 or not - see Figure 1C. As shown in Figure
1D, the accuracy of OpWise was not dramatically affected
by uncoupling the mean from the variance. However, the
heavy-tailed simulations for the ecox data set produced
slopes around 1.2, with a maximum of 1.35. (There was
also one simulation with a very low slope, but this was
due to a few extreme and biologically implausible values
of y; that are not present in our genuine data sets.) A slope
of 1.35, which corresponds to reporting P = 0.982 when
the true P = 0.95, is not ideal, but as we will show, meth-
ods that do not account for systematic bias, including
non-parametric methods, can perform dramatically
worse.
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For all simulations, we also compared the operon-wise p-
values to either the ideal or true significance. These gave
similar slopes as the single-gene p-values, but with consist-
ently smaller deviations from 1.0 (data not shown). Over-
all, OpWise was largely insensitive to deviations from its
assumptions.

Presence of bias

OpWise identified large amounts of systematic bias, simi-
lar in magnitude to the true changes in gene levels and the
replication error, in all four data sets (Table 1). Further-
more, the bias was statistically highly significant in all
four data sets, as determined by a maximum likelihood
ratio test (see Table 1).

One source of apparent bias might be correlation between
the replicates. That is, if the replicate measurements are
not truly independent and some of the replicates are cor-
related, then the noise in the average of the replicate meas-
urements will be larger than expected. For example, the
shHeat5 data set had a total of 12 measurements per gene
(3 biological samples times two slides per sample with
dyes reversed times two spots per gene on each slide). In
this data set, the replicate measurements with the same
dye assignment were more correlated than those with
reversed dyes. To test the pattern of bias with fully inde-
pendent replicates, we created two subsets of the data.
First, we used only the first spot for each gene on the slides
and a single biological replicate, leaving two replicates
with different dye assignments. Second, we used only a
single dye assignment and only the first spot per slide,
leaving three replicates from different samples. In both
cases, we still observed large amounts of bias (data not
shown). We also verified that OpWise was not sensitive to
correlations between replicates. We created an exact dupli-
cate of each replicate, and this "doubled" data set gave sig-
nificance values very similar to the original data set
(results not shown).

We also considered the possibility that mRNA levels in
shCold5 and shHeat5, which were measured only 5 min-
utes after the stress was applied, were far from steady-state
and that some operons would have poor agreement
because of differential mRNA decay. However, later time
points from these same experiments showed similar
amounts of bias (data not shown). Overall, these analyses
confirmed that systematic bias is a major problem in real
data sets. Next, we show that ignoring this bias can lead to
overestimating the significance of individual genes.

OpWise estimates significance correctly

To test the quality of the significance estimates on real
data, we compared the confidence assigned by OpWise to
the extent of agreement with operons. Although our p-val-
ues are single-tailed - they test only the hypothesis that ;

http://www.biomedcentral.com/1471-2105/7/19

> 0 - we wanted a two-tailed notion of confidence,
because this is more comparable to other methods. We
defined the two-tailed confidence as C = 2-|p - 1/2|. For
each data set, we sorted genes by confidence into eight
groups. For each gene, we then identified other genes pre-
dicted to be in the same operon, and asked whether the
two genes changed in the same direction. (We used only
adjacent genes, as operon predictions for non-adjacent
genes are less confident.) Intuitively, if a group of genes
are 99% confident changers, then 99% of the time, the
measurement for that gene is correct, and it will always
have the same sign as other genes in the operon; the other
1% of the time, there is no information about the gene,
and the genes will have the same sign, by chance, 50% of
the time. That is, P(Agree) = C + (1 - C)/2, or 2- P(Agree) -
1 = C We also needed to correct for the possibility that the
operon prediction is incorrect, which gives 2 - P(Agree) - 1
= C- P(Operon). Thus, we defined an adjusted measure of
agreement, whose expectation ranges from 0 for data that
is all noise to 1 for perfect data, as Adjusted = (2 - Agree - 1)/
P(Operon), where Agree is 1 if true and 0 if false. This meas-
ure corrects for variations in the confidence of operon pre-
dictions between groups of genes - in some data sets, the
most confident changers were, on average, in more confi-
dently predicted operons (data not shown). Finally, even
if the measurement for the first gene in the operon is
highly confident and correct, the measurement for the
other gene in the operon may be noisy, and the two genes
may not agree. As there is no simple way to correct for this,
we used the simulations described above, and compared
the relationship between confidence and agreement in the
real data to that in the simulations. The relationship
between confidence and adjusted agreement with oper-
ons was approximately linear in all data sets (Figure 2)
and was largely consistent with simulations [see Addi-
tional file 3].

Furthermore, for most groups of genes, including those
with modest confidence values, the adjusted agreement
with operons was much larger than zero. This suggests
that the expression levels of all genes in these experiments
were in fact changing, even if many individual genes could
not be measured with confidence. In all four data sets, the
top six of eight confidence groups had significantly more
operon pairs that agreed with microarray data than not
(all p < 0.05, binomial test). This confirmed our assump-
tion that all genes are changers.

Bias-free significance estimates are unreasonable

Figure 2 also shows the relationship between confidence
and operons for our model without considering bias
(using ¥ = ). Naturally, the confidence estimates from
the model without bias were higher. In the shHeat5 and
shCold5 data sets, the bias-free estimates of confidence
were much too high: the highest and second-highest con-
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Single-gene significance and agreement with operons. For each data set and for three methods of assessing significance
(OpWise, OpWise without bias, and significance analysis of microarrays), we divided the changers into eight groups of genes

with different levels of confidence. The x axis shows the average confidence within each group of genes. For each group, the y
axis shows the adjusted agreement with operon pairs (the adjusted proportion of pairs which have the same sign of log-ratio),
which ranges from 0 for random data to | for perfect measurements. We also show average results from simulations for each
data set (simulated and analyzed with the OpWise model). The error bars give the 95% confidence interval (from a t test) for
the mean agreement for each group from the OpWise significance values. The odd left side of the ecox SAM curve is due to

noise in the local FDR.
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fidence groups both had confidence levels very near one,
but the second-highest group had a much lower level of
agreement with operons than the highest group. This also
rules out one alternative explanation for why we detected
significant bias in these data sets, which is that microarray
data lacks bias but the operon predictions were flawed or
systematically overconfident. In the latter case, the agree-
ment with operons should have been lower for changers
at every level of confidence, including the most confident
changers. For dvSalt30, the bias-free confidence estimates
appear to be more modestly over-confident, while for
ecox, the difference between models with and without
bias was small.

We also compared the confidence estimates from our
model to those from a popular non-parametric method,
SAM version 1.21 [4]. For each gene, SAM tests the null
hypothesis that the gene's expression level is identical in
the two conditions. SAM uses a modified ¢ statistic with a
pseudovariance term in the denominator, but rather than
using a t test, SAM estimates the null distribution for the
modified ¢ statistic by performing random permutations
of the data. SAM then uses the proportion of genes with
high p-values to estimate the proportion of genes that are
non-changers, and hence the proportion of genes that are
true changers (similar to [7]). Finally, it corrects for mul-
tiple testing and estimates the false discovery rate (FDR).
(For each gene, the FDR is an estimate of the proportion
of false positives among genes that are at that gene's sig-
nificance level or more significant.) To compare signifi-
cance values from SAM to the confidence levels from
OpWise in Figure 2, we needed the proportion of false
positives within each group, also known as the local false
discovery rate - the confidence is 1 minus the local FDR.
For the most significant group, the local FDR is simply the
FDR for the least significant member of the group. For the
less significant groups, the number of false positives can
be estimated from the FDR by subtracting the false posi-
tives expected for the more significant groups (similar to
[22]).

As shown in Figure 2, for the shHeat5 and shCold5 data
sets, SAM is far too confident, and is similar to the para-
metric model without bias. For the shHeat5 data set, SAM
estimated an FDR of under 10-*for 2,284 genes, represent-
ing three quarters of all genes! In contrast, OpWise esti-
mated that this group of genes was only 80% confident,
implying a false discovery rate of 20%. The modest agree-
ment with operons of these genes suggests that OpWise's
estimate is reasonable (Figure 2). Indeed, the subset of the
SAM significant changers that were not considered signifi-
cant by the single-gene OpWise method (those with con-
fidence < 0.95) showed much lower agreement with
operons than those that were considered confident (83%
vs. 97% of operon pairs changed in the same direction, p

http://www.biomedcentral.com/1471-2105/7/19

< 1013, Fisher exact test). Reporting a FDR of 104 when
the true value is around 0.2 is far worse an overstatement
of p-values than we ever observed in the OpWise simula-
tions, even in those that violated our distributional
assumptions (it would correspond to a slope of 6.6 in Fig-
ure 1D).

For the dvSalt30 data set, which has a moderate amount
of bias, SAM was also more confident than our model, at
least for the more significant changers (the three right-
most groups containing the top 1,300 genes). The SAM
curve was also noticeably below the simulation curve, sug-
gesting that it was (moderately) over-confident. Finally,
for ecox, which has little bias and a heavy-tailed distribu-
tion, SAM performed well (see top right of curve), while
OpWise was perhaps slightly over-confident. Overall, we
concluded that the bias OpWise inferred in these data sets
was genuine, and that ignoring this bias (i.e., assuming
that errors will average out over replicates) leads to unrea-
sonable p-values.

Operon-wise tests have greater power

We hypothesized that when genes in operons have con-
sistent measurements, higher confidence can be assigned
to those measurements. We calculated "operon-wise" p-
values that, for each gene, take into account the data for
other genes in the same operon (if such genes exist; other-
wise the operon-wise and single-gene p-values are identi-
cal). To test whether operon-wise p-values were more
powerful than single-gene p-values, we compared the dis-
tributions of the operon-wise significance values to that of
the single-gene significance values. Significance was
defined as 1 - C. As shown in Figure 3, the operon-wise sig-
nificance estimates are much more confident in each of
the data sets, and at a significance cutoff of 0.01, 2-10
times more genes can be identified.

To summarize the performance of the various methods
considered here - SAM, single-gene OpWise p-values,
operon-wise p-values, and single-gene OpWise with bias
ignored - we report the number of putative changers iden-
tified at a confidence threshold of 0.05 and the agreement
with operons of those changers (Table 2). If bias is
ignored, then single-gene OpWise generates similar
results as SAM, but with bias accounted for, OpWise
changers have much higher agreement with operons. This
is probably because OpWise correctly identifies fewer
genes as statistically reliable changers. The exception is the
ecox data set, which has less bias (see Table 1), and hence
all three methods give similar results. Compared to single-
gene OpWise, the operon-wise method identifies more
genes, which also show excellent agreement with operons,
as this is part of how they are selected.
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included in the operon-wise results.
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Table 2: Genes with significant changes in expression as identified by OpWise methods and by SAM.

dvSalt30 ecox shHeat5 shCold5
Method #Genes %Agree #Genes %Agree #Genes %Agree #Genes %Agree
I-gene 220 100% 1062 98% 1002 97% 187 100%
(OpWise)
operon-wise 401 99% 1318 100% 1284 99% 374 100%
no-bias 1090 90% 1269 98% 3020 87% 3063 70%
SAM 852 94% 957 99% 3348 83% 3258 68%

For OpWise, genes were selected if the two-tailed confidence was 95% or higher (P(x;> 0) < 0.025 or P(y; < 0) > 0.975). For SAM, genes were
selected if the false discovery rate was 5% or lower. For each method and for each data set, we report how many genes were selected as significant
changers and what percentage of the operon pairs that contain those genes changed in the same direction. This "agreement" should be 100% for
perfect microarray data and perfect operon predictions and 50% for random data.

Conclusion

We have described how operons can be used to detect sys-
tematic errors in measurements of prokary-otic gene
expression patterns, to account for the bias when estimat-
ing significance, and to increase the confidence of meas-
urements that are consistent within an operon. OpWise
relies on the assumption that genes in the same operon
have matching expression profiles. Although this assump-
tion is only approximately correct, it is effective in prac-
tice, and is strongly preferable to ignoring the presence of
systematic errors in the data. This assumption could be
made more accurate by excluding from consideration
those operon pairs that span an internal promoter or a
partial terminator. Unfortunately, predicting alternative
transcripts remains a challenging problem even in E. coli
[23].

OpWise also relies on assumptions about the distribu-
tions of the true means and variances of the data. These
assumptions are not entirely accurate, but without such
assumptions, it would not be possible to distinguish low
agreement within operons due to replication noise from
that due to systematic bias. In simulations, OpWise was
robust to the observed deviations from the assumptions.

In four data sets, OpWise identified significant and some-
times large amounts of systematic error. If this bias is not
taken into account, as is generally the case with current
approaches, then the statistical analysis can be far too
aggressive. This bias is not an artefact arising from errors
in operon predictions or from our distributional assump-
tions.

Likely sources for this bias include cross-hybridization or
non-specific hybridization of some probes [10,21].
Indeed the data set without large amounts of bias (ecox)
was collected using Affymetrix gene chips that use 15
probe sets per gene, and was normalized with a method
that attempts to identify "bad" probes and remove them
from the data [21].

Irrespective of bias and for all four data sets, the operon-
wise method identified many more genes at any desired
level of significance than the single-gene method.
Although we only tested the operon-wise approach with
one method for assessing significance, in principle,
operon-wise p-values can be computed using single-gene
p-values from any method. However, operon-wise p-val-
ues should not be used to rank genes, because consistent
operons with modest changes can be ranked highly, and
these could be indirect effects that are of low biological
interest. Instead, we recommend setting a confidence
threshold and then ranking all genes (or operons) above
that confidence level by their fold-change. In any case, the
main benefit of the present work is not for ranking or
other broad exploratory analyses but in the ability to
obtain reasonable p-values for specific hypotheses of the
form "was gene X or operon Y upregulated in this experi-
ment?" We also note that the benefit of OpWise is in
assessing the reliability of the measurement, and not in
estimating the amount of change for any gene.

As microarray technology becomes less expensive, experi-
ment designs with high amounts of replication are
becoming common. We observed that the systematic error
can be comparable to or even larger than the variation
between replicates. If systematic error is large relative to
replication error, then performing many replicate meas-
urements may not be cost-effective, and using several dif-
ferent probes for each gene might be preferable.

Finally, although the method we describe here requires
operons and is only applicable to prokaryotic data, a sim-
ilar approach might be useful for eukaryotes if there is
prior knowledge of pairs of genes that have matching
expression patterns. For example, stable complexes in
yeast are often co-expressed [24], and the worm C. elegans
has operons (but their co-expression may be weak [25]).
In any case, our finding that statistical confidence levels
from single probes can be misleading because of system-
atic bias probably applies to eukaryotic data.
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