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This paper introduces a practical data-driven method to discriminate among large-scale kinetic reaction models.
The approach centers around a computable measure of model/data mismatch. We introduce two provably
convergent algorithms that were developed to accommodate large ranges of uncertainty in the model parameters.
The algorithms are demonstrated on a simple toy example and a methane combustion model with more than
100 uncertain parameters. They are subsequently used to discriminate between two models for a contemporarily
studied biological signaling network.

1. Introduction

The scientific method of establishing a reaction mechanism
consists of performing pertinent experiments, postulating a
reaction mechanism, and comparing the predictions of the
mathematical model describing this mechanism to the experi-
mental observations. Often, there are several competing hy-
potheses advanced to explain the same observed phenomena,
and one is faced with the problem of discriminating among them.

Discrimination or selection among competing reaction models
begins with consideration of mutual consistency of the individual
thermochemical assignments and their harmony with the kinetic
theory.1 One then asks how well each reaction model describes
given experimental observations. The usual mathematical ap-
proach to answer the latter question evokes a variation of the
least-squares or statistical inference.2-4

Recently,weformulatedamethodologyofdatacollaboration5-7

aimed at the analysis of complex systems with differential-
equation models and heterogeneous datasets and demonstrated
this formulation on complex reaction systems. The formulation
is based on the concept of a dataset,6,7 which formally integrates
pertinent experimental data and mathematical process models.
One of the questions addressed was dataset consistencys
motivating a measure that quantifies the degree to which the
process model predicts the data.7

In the present study we apply the measure of consistency to
the problem of model discrimination. Previously we have
examined datasets for which a good amount of detail on the
process models was available. In the model discrimination
setting, less confidence is placed on the individual candidate
models. This often manifests itself in large intervals of
uncertainty in model parameters. We demonstrate two new
algorithms that allow our previously introduced techniques to
more readily accommodate such large parameter ranges.

We begin by briefly reviewing the basics of the data
collaboration method. After that we formulate the model
discrimination problem and describe the applicable mathematical
details and numerical techniques. We then present three
examples of the approach, one being a toy example and two
considering real-world problems, one from the field of combus-
tion chemistry and the other from systems biology. We conclude
with a brief summary. The notations used in this work are listed
in Table 1.

2. Data Collaboration
Data collaboration is a method that unites process models

and associated admissible parameter values with experimental
data and accompanying uncertainties. Heterogeneous data
obtained from various sources are integrated through models
that depend on common parameters. This ensemble is called a
dataset. Optimization driven techniques can then be applied to
dataset analysis, including performing dataset based predictions,5

determining dataset consistency,7 and the here addressed topic,
discriminating between candidate system models.

2.1. Dataset.As before,7 we associate with each experiment
a dataset unit, (d, u, M), whered is the measured value,u the
reported uncertainty, andM a mathematical model of the
experiment. The true value of the experimental observable,y,
satisfies |d - y| e u. The modelM depends on only the
parameter vector to generate a prediction fory, and is often
developed from a more general system model by fixing the
initial conditions and inputs to the conditions of the particular
experiment.

In the following, the collection of dataset units comprise the
dataset D. The constantm will denote the number of units in a
dataset and the subscripte will be employed to index dataset
units and their associated components;n will signify the number
of parameters relevant for a particular dataset. The boldfacex
will denote a value of then-dimensional parameter vector, and
the ith component of this vector will be indicated byxi. Thus,
x ) (xi)i)1

n . The prior information concerning the parameter
vector is encapsulated by a set H containing all allowable values.
We assume H can be specified by componentwise confinement
of the parameter vector to bounded intervals, H) {x: Ri e xi

e âi}.
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2.2. Dataset Consistency Measure.In prior study,7 we
introduced a consistency measureCD of a dataset

The dataset isconsistentif there exists a parameter vectorx in
the set H at which allm dataset units satisfy|Me(x) - de| e ue.
The constraints in eq 1 indicate one can subtractCD from each
ue and find a parameter vector at which all model evaluations
match their respective data within these perturbed uncertainties.
Consequently, a dataset with nonnegativeCD is consistent.

The formulation of a consistency measure is not a radical
departure from the familiar weighted least-squares technique
used to solve the inverse problem that fits parametrized models
to data. The chief difference is specification by the former of
the maximum permissible error level a priori throughue.
Operationally, computing the consistency measure involves
minimizing the maximum model/data mismatch, with the
consideration that mismatch below the maximum permissible
error level is somewhat acceptable. Section 1 of the Appendix
provides a brief derivation linking the consistency measure to
least-squares analysis.

3. Model Selection and Discrimination

Given a physical system upon which various experimental
measurements have been performed, one is interested in a model
to make inferences from the data. In this work, we consider the
situation where the researcher must select the most appropriate
system model from a collection of competing candidate models.

The appropriateness of a candidate is customarily appraised
by optimizing an objective or cost function that may incorporate
model/data mismatch, parsimony, model robustness, and devia-
tion of parameters from accepted values. This general optimiza-
tion paradigm includes weighted least-squares approaches,
maximum likelihood based methods, and various statistical
strategies incorporating information theoretic criteria.2-4,8,9 It
is well-known that standard search techniques may not discover
the global solution to a nonlinear optimization problem. In fact,
for nonconvex problems, verifying that a solution returned by
such a procedure is even locally optimal is computationally
complex (Horst et al.10 show this to be an NP-hard problem).
In parameter estimation, local solutions are often accepted
because they provide a “fit” model. However, in a model

selection exercise, local solutions may falsely rank the candi-
dates, so when possible, global methods should be considered.

Using the dataset consistency concept introduced in section
2, we approach the discrimination problem in the following way.
Model fitness is ranked by incorporating each candidate in a
distinct dataset (each describing the same experiments but
employing a different system model) and evaluatingCD for each.
The largest value ofCD indicates the superior candidate. As
with any ranking, if there is little difference between the top
performers, prudent selection, perhaps requiring additional
experiments or statistical characterization of experimental errors,
is needed. TheCD-based model selection approach requires only
that a dataset incorporating each candidate model be formed
and that each candidate is accompanied by a set of admissible
parameter values.

A key characteristic ofCD is that it corresponds to a global
optimum and is computable in practice, using optimization
techniques we used in the past and expand in this work. For a
given hypothetical model, the consistency measure approach
minimizes the worst-case data/model mismatch. As such, the
method is quick to point out defects (evidenced by dataset
inconsistency) in a hypothetical model. This comes at the
expense of high sensitivity to insufficient error bounds assigned
to unsuspected outliers. The primary contribution of this work
is not specification of an infallible objective function for model
discrimination (which is perhaps unachievable given the breadth
of applications) but instead the description of our global solution
techniques. The methods for evaluating eq 1 that we present in
the next section may be readily modified to incorporate
alternative objective functions that are less sensitive to outliers,
penalize the number of model parameters, or have other
circumstance driven characteristics.

4. Solution Methods

4.1. Dataset Creation.Consider a system for which various
quantities of interestYe (e ) 1, ...,m) have been measured. Let
Msys be a candidate system model that is capable, after
specification of initial conditions, inputs, and auxiliary output
functions, of forming a parameter dependent prediction of each
Ye. FromMsyswe then derive an experiment modelMe for each
Ye. As a brief example of the technique, supposeMsys has a
state-space representation

wherex signifies a particular value for the uncertain parameters

TABLE 1: Notation and Symbols

symbol datatype description

Msys mathematical function candidate kinetic reaction model; has dependency on parameters and experimental conditions
e integer generic index used to reference dataset units
(de, ue, Me) dataset unit recorded information from an experimental observation
D dataset collection ofm dataset units
Ye (textual) description description of the observable of theeth dataset unit
ye scalar true value of the observable of theeth dataset unit
de scalar measured data of theeth dataset unit
ue scalar upper bound on the uncertainty ofde

Me mathematical function parametrized experiment model that predictsye (possibly derived fromMsys)
x n-dimensional vector value of the model parameters
H n-dimensional rectangle set of admissible parameter values
Se mathematical function surrogate model that approximatesMe over H
be scalar upper bound on maxx∈H|Me(x) - Se(x)|
CD scalar consistency measure of the dataset D (see eq 1)
Ch D scalar upper bound on the consistency measureCD

CD scalar lower bound on the consistency measureCD

CD ) maximum value ofγ subject to the constraints:

[x ∈ H
de - (ue - γ) e Me(x) e de + (ue - γ), for e ) 1, ...,m]

(1)

d
dt

zt ) f (x, zt) (2)
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andzt denotes the state vector at timet. SupposeYe is specified
astheValue of z10 when the initial condition z0 ) 0. The model
Me is then the relation betweenx andz10 when the system is
initialized with zero initial conditions. Obviously, more elaborate
experimental conditions or output functions mapping the state
trajectory to a particular experimental observable are possible.

For each of themexperimental observations,Me is combined
with the measured datade and the bound on the observational
uncertaintyue to realize a dataset unit (Me, de, ue). The behavior
of Msysat the experimentally exercised conditions is completely
captured by the modelsMe (e ) 1, ..., m). Consequently,
operations on the dataset, together with information on the
admissible parameters ofMsys, can determine the compatibility
of Msysand the experimental data. In this work the compatibility
is indicated by the consistency measureCD (eq 1) of the dataset.

4.2. Computation of CD. A constrained optimization with
linear objective and general form constraints, such as that which
defines the consistency measure in eq 1, resides in the
computational complexity class termed NP-hard. In fact, adding
a single indefinite quadratic constraint to a linear program (an
optimization with linear objective and constraint functions)
results in an NP-hard optimization.11 Efficient (i.e., polynomial-
time) solution methods for this class of problems remain
undiscovered and are widely believed to not exist.12 We
approach the difficult optimization of eq 1 by approximating
each process model that appears in the constraints and solving
a related optimization involving these approximations and
associated fitting errors. While these refinements do not alter
the complexity class of the problem and incur the added
difficulty of approximation, they appear to be effective in
practice.

We have developed two algorithms to calculate the dataset
consistency measure that rigorously treat the model approxima-
tion step. The first is a branch and bound algorithm that
computes a lower boundCD and upper boundCh D that satisfy
CD e CD e Ch D. These bounds may be brought arbitrarily close
to each other in finitely many iterations, effectively determining
CD to any required tolerance. The second algorithm implements
a trust-region strategy. This is a local search technique, and as
such, can only compute a lower boundCD on CD. This lower
bound may be useful for comparative purposes. For example,
in the biological model discrimination case of section 5.3, we
rank two models by showingCD for one model was greater
thanCh D for the other.

4.2.1. Surrogate Model Approximations.The approximation
to an experiment modelMe is called asurrogate model(the
terms meta-modeland response surfacealso appear in the
literature) and is denotedSe. For clarity, we restrict our
discussion to quadratic surrogate models; however, the tech-
niques generalize to polynomial surrogates of higher order.
Employing surrogate models in the optimization routines offers
three benefits. First, evaluation of an ordinary differential
equation (ODE) based model invariably requires a computer
simulation that is subject to deterministic errors of roundoff and
inexact numerical integration. While the true model behavior
may be smooth, this inexact evaluation introduces low-amplitude
high-frequency ripples in the objective and/or constraint func-
tions. This “noise” cripples gradient- or Hessian-based optimiza-
tion routines (e.g., Newton or quasi-Newton approaches). Fitting
quadratic surrogate models to experiment model evaluations
tends to dampen such ill behavior. The second benefit is the
(relative) ease with which off-the-shelf constrained optimization
software can handle smooth algebraic functionsssurrogate
model evaluation and gradient assessment is computationally

inexpensive. Last, tractable relaxations exist for optimizations
involving polynomials.34

The approximationSe is obtained using the response surface
methodology.13-16 This approach uses regression and computer
experiments (i.e., numerical evaluations of the dynamic experi-
ment modelMe(x)) at optimally selected combinations of the
parameter values to construct the surrogate model. The entire
set of parameter combinations is called a computer experiment
design. These designs originate from a rigorous analysis of
variance, with the objective of minimizing the number of
computer experiments to be performed to gain the required
information. The residuals from the regression are monitored
to assess the quality of fit.

The model fit of a polynomial surrogate is improved if the
degree is increased or if the approximation is sought over a
smaller parameter domain. The later is exploited by the routines
we present in sections 4.2.2 and 4.2.3, both based on intelligently
sectioning the parameter domain to reduce the fitting error. A
more complete discussion of the optimizations that result with
this surrogate fitting procedure, their properties, and recently
discovered solution techniques for higher order polynomial
surrogates, can be found in Seiler et al.17 and references therein.

4.2.2. Branch and Bound Algorithm for CD. Branch and bound
is a widely used technique for global optimization over a
bounded or finite domain. The method is employed in numerous
applications, including integer and mixed-integer linear pro-
gramming and nonlinear programming.18 The technique resolves
a difficult optimization by recursively partitioning the domain
over which the problem is posed into successively smaller
disjoint subdivisions and examining related “easier” problems
over each subdivision. As indicated by the name, the method
involves two basic operations.Branchingconsists of dividing
members of the subdivision collection (which may be repre-
sented as nodes in a binary tree diagram whose root node
corresponds to the original problem domain; see Figure 3) into
a larger collection of smaller subdivisions.Boundingrefers to
performing (presumably) tractable computations that determine

Figure 1. Program flow of the trust-region algorithm discussed in
section 4.2.3. The algorithm is found in section A.3.
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an interval that contains the maximum (when the method is
applied to a maximization) of the objective function over each
subdivision. This interval is described by an upper bound
Φub(Hl) and a lower boundΦlb(Hl), where Hl denotes the
particular subdivision. Any subdivision whose upper bound is

below the largest lower bound among the current subdivisions
cannot contain the global maximum and is discarded. This
discardation step, which is traditionally calledpruning, does
not change the worst-case time complexity of the algorithm.
However, in practice it imparts considerable time savings. A
subdivision issolVed if its upper and lower bounds are within
a specified tolerance of one another. The procedure terminates
when all undivided subdivisions (the leaves in the tree diagram
representation) are either solved or pruned.

A detailed description of the branch and bound algorithm
and proof of convergence toCD is provided in section A.2 of
the Appendix. Here it is pertinent to mention the method requires
an upper bound on the surrogate modeling error. Specifically
for eache, we assume there is a known constantbe such that
maxx∈H| Me(x) - Se(x)| e be. In practice, it is not possible to
know such a bound with certainty. However,be can be estimated
by assessing|Me - Se| both at the sample points used in the fit
and at any additional points generated expressly for that purpose.
This estimate can be improved with local search. Another salient
point is that the worst-case algorithm performance, measured
in number of iterations required for termination, grows expo-
nentially with problem size. This handicap is expected since as
mentioned in section 4.2.1, consistency measure determination
resides in a complexity class for which no known polynomial-
time algorithm exists. Potentially exponential time performance
is typical of branch and bound procedures and global methods
in general.

4.2.3. Trust-Region Algorithm for CD. The branch and bound
procedure determines the consistency measure of a dataset by
first examining the entirety of the parameter domain and then
considering subdivisions. This creates practical difficulties in
the initial iterations because the polynomial surrogate models
must approximate the experiment models over the entire
parameter domain. When this fit is poor (which indicates the
experiment model has nonpolynomial behavior on the entire
domain of H), determining an optimal approximation and
accurately assessing fitting error requires numerous model
evaluations. As an alternative, in this section we introduce a
trust-region based algorithm that produces a lower bound on
the consistency measure. This technique creates piecewise fits
over subsets of H, analogous to the technique employed by the
PRISM method.19 This is not a global optimization method and
produces only a lower boundCD.

The dataset consistency measure has the equivalent definition

that is better suited for the discussion of this section. The trust-
region algorithm is initialized by selecting a rectangular subset
Htr of H that is sufficiently small for quadratic surrogates to
accurately fit each experiment model. Htr is called thetrust-
regionbecause it is the domain over which we tentatively trust
the validity of the approximations. Evaluatingh in eq 3 at the
center pointxc of Htr provides an initial lower bound onCD.
Next we use a local search to compute

where fore ) 1, ..., m, Se is a surrogate model forMe that is
valid over the trust-region Htr. This provides a trial pointxtry at
which h can again be evaluated. Ifh(xtry) > h(xc), the lower
bound onCD has improved, so Htr is replaced with a new slightly

Figure 2. Convergence of the bounds onCD for the toy example of
section 5.1. Six iterations were used to computeCD within a tolerance
of 0.005. Notice Ch D from the first iteration is negative, so the
hypothetical model is invalidated after one iteration.

Figure 3. Nodes visited by six iterations of the branch and bound
procedure as applied to the toy example of section 5.1. At algorithm
termination, each node has been pruned except node 11, which contains
the optimal solution.

CD ) max
x∈H

h(x), whereh(x) )

min
e)1,...,m

{ue - | Me(x) - de|} (3)

xtry ) argmax
x∈Htr

min
e)1,...,m

{ue - | Se(x) - de|}, (4)
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larger trust-region centered aboutxtry and the procedure is
repeated. If not, this indicates poor surrogate approximation over
Htr, so Htr is made smaller, model fits are regenerated, and a
new trial point is computed via eq 4. The schematic in Figure
1 depicts the flow of the algorithm.

Trust-region methods have enjoyed considerable research
activity; see Conn et al.20 for a comprehensive review. In Elster
and Neumaier21 the idea is applied to noisy objective functions.
Our implementation breaks from tradition in that the function
approximations are made using the response surface methodol-
ogy discussed in section 4.2.1 rather than from the first few
terms of the Taylor approximation. This produces approxima-
tions with larger regions of validity and correspondingly larger
trust-regions.

The primary benefit of the trust-region algorithm over off-
the-shelf constrained optimization software lies in the use of
algebraic surrogate models in place of the ODE-based experi-
ment models. By design, the surrogate models only involve
parameters that have reasonable impact on the model behavior
(so-called active variables), so the optimizations on the surrogate
models involve fewer variables and are better conditioned. Also,
the Jacobian and Hessian of the surrogate models may be
cheaply computed. Additionally, model approximation has a
smoothing affect that alleviates the aforementioned ripples that
may be introduced into the experiment models by numerical
integration. While these ripples can be attenuated by stringent
integration tolerances, the trust-region method bypasses that
additional computational expense.

5. Examples of Applications

5.1. Toy Example.Our first case is a toy problem that is
similar to example 4 from the work of Prajna.22 The example
features two parameters and is used to illustrate the branch and
bound algorithm forCD in a situation where parameter domain
subdivisions and surrogate models are easily visualized. Con-
sider a system with the hypothetical differential equation model

From prior information it is known that 0.5e x1 e 2.1. We
suppose three measurements have been taken on this system,
one establishing that the initial statez(0) lies in the interval
[0.3, 1.1] another determiningz(2) lies in [0.55, 0.65], and the
third finding z(4) in [0.2, 0.3]. With these data, Prajna used a
novel barrier function approach22 to show the hypothetical model
was invalid. We use the branch and bound algorithm introduced
in section 4.2.2 to determine a consistency measure for this
model/data ensemble.

We now assemble a dataset incorporating the hypothetical
model. First consider the measurement ofz(2). A predictive
model for the state at timet ) 2 requires knowledge of both
the differential equation (eq 5) and the state at some time point.
Conveniently, knowledge that the initial state lies in the interval
[0.3, 1.1] is available. We incorporate this measurement as an
additional uncertain parameter, definingx2 ) z(0), and noting
0.3 e x2 e 1.1. A model forz(2) as a function of the uncertain
parametersx1 andx2 is then

From this we assemble a dataset unitU1 ) (d1, u1, M1) where
d1 ) 0.6, u1 ) 0.05, andM1 is described by eq 6. The dataset

unit U2 for the measurement ofz(4) is defined similarly. The
prior information is the set H) {(x1, x2) ∈R2: 0.5 e x1 e 2.1
and 0.3e x2 e 1.1}.

Six iterations of the branch and bound algorithm presented
in section 4.2.2 determinedCD for this dataset to be-1.254
with a toleranceε ) 0.005. Figure 2 displays convergence of
the upper boundChD and lower boundCD with iteration number.
These bounds draw together as H is subdivided, reflecting a
reduction in surrogate model fitting error. The subdivision of
H generated by the algorithm is illustrated in Figure 3. Figure
4 displays a graph ofM1 and the quadratic approximationS1

that was fit over H. The approximation is reasonably accurate,
but visibly differs fromM1. As H is subdivided by the algorithm,
the accuracy of this approximation will improve. This is depicted
in Table 2, which contains both the surrogate fitting error bounds
andΦlb andΦub evaluated at each subdivision. 336 evaluations
of the experiment modelsM1 andM2 were required to compute
CD to this tolerance. However the procedure demonstratedCD

was negative in the first iteration, which required only 48
evaluations of the two models.

5.2. GRI-Mech Dataset.We demonstrate the trust-region
algorithm on a real-world example, the GRI-Mech 3.0 dataset,23

taken from the field of combustion chemistry. It is a collabora-

d
dt

z(t) ) - x1z(t)
3 (5)

M(x1, x2) ) z(2), subject toz(0) ) x2,
d
dt

z(t) ) - x1z(t)
3

(6)

Figure 4. Response surface ofM1(top frame) and the quadratic
approximationS1(bottom frame). The approximation satisfies|S1(x) -
M1(x)| e 0.0125 for all x in H. The branch and bound algorithm
partitions H into subdivisions, reducing model approximation errors.

TABLE 2: Iteration Summary for Toy Branch and Bound
Example

iteration no. node no. Φlb(Hl) Φub(Hl) b1
l(×10-3) b2

l(×10-3)

k ) 1 l ) 1 -1.355 -1.170 12.5 10.8

k ) 2 l ) 2 -1.305 -1.175 8.30 7.44
l ) 3 -2.872 -2.806 5.89 3.89

k ) 3 l ) 4 -1.638 -1.558 2.50 2.82
l ) 5 -1.300 -1.233 3.30 2.43

k ) 4 l ) 6 -1.278 -1.251 1.19 0.795
l ) 7 -1.510 -1.486 0.637 0.318

k ) 5 l ) 8 -1.469 -1.443 0.538 0.474
l ) 9 -1.264 -1.253 0.464 0.238

k ) 6 l ) 10 -1.364 -1.362 0.110 0.0778
l ) 11 -1.256 -1.254 0.0925 0.0717
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tive data repository for the development of detailed kinetic
models for pollutant formation in the combustion of natural gas,
and was used in our previous studies.5-7 In the present case,
we use the GRI-Mech 3.0 dataset to test the trust-region
algorithm for CD in a situation where we know the correct
answer a priori. The example provides a frame of reference from
which we can assess the algorithm’s performance on the
biological application of the next subsection that features a large
H and ODE-based experiment models.

Briefly, the GRI-Mech 3.0 dataset is composed of 77 dataset
units and 102 active parameters (see refs 6, 7, and 23 for details).
High fidelity quadratic approximations for the kinetic model at
the conditions of each dataset unit are available, and for the
purpose of this example, we treat these as the “true” models
Me (e ) 1, ..., 77). In a prior study examining this dataset with
the quadratic models,7 we employed this constrained optimiza-
tion routine FMINCON in the MATLAB programming environ-
ment to determineCD ) - 0.0065 atue ) 0.08 (other means
foundChD ) - 0.0033). We validated the trust-region algorithm
described in section 4.2.3 on this dataset, using linear surrogate
models to approximate the quadratic experiment models. The
resulting lower bound onCD essentially duplicated the lower
bound found in our prior work by examining the quadratic
models directly, determiningCD ) -0.0068 in 13 iterations.
This value ofCD indicates that addition of 0.0068 to eachue

makes the dataset consistent. Additionally, we note that in only
four iterations, the algorithm improvedCD from -0.288 to
-0.017. Figure 5 shows how this lower bound onCD increases
with iteration count.

5.3. Calcium Mobilization Model Discrimination. We now
describe a real-world example for which we do not know the
results a priori. It is taken from a biological signaling application
that triggered development of the methods described in this
work. We consider two proposed models and show that one
better reproduces the experimental data.

In the response to an extracellular stimulus (e.g., presence
of a signaling chemical, electric potential, or mechanical
stimulation), eukaryotic cells display a variety of responses,
including chemotaxis (movement along the concentration gradi-
ent of a chemotactic agent), phagocytosis (engulfing foreign
matter), altered gene expression, and secretion. These cellular
behaviors are triggered through multilayered signaling pathways
that involve a myriad of signaling molecules. Signal transduction
along such pathways is a key regulatory mechanism for most
biological processes and is an area of active research. A growing
body of quantitative cellular signaling data is being generated
by the biological community (though it is often difficult to cross-

compare data among different laboratories). One large effort,
the Alliance for Cellular Signaling (AfCS), is dedicated to
developing an extensive model of G-protein coupled receptor
(GPCR)-mediated signal transduction in a murine macrophage
cell line.24 Application of one or more natural or pharmaceutical
receptor ligands to the outside of the cell invokes a complex
response in this chemically complex pathway.

The release of calcium from internal stores into the cytoplasm
is a central secondary response that is experimentally accessible
in living cells through calcium sensitive fluorescent dyes.
Different combinations and timing of ligand application lead
to different complex patterns of calcium response. The action
of calcium, which occurs in a diverse array of cell types (cardiac,
skeletal muscle, endothelial, pancreatic, etc.) is not fully
understood, but considered to be a ubiquitous signaling phe-
nomena.25 It is the subject of numerous experimental and
theoretical reports and has provided a fruitful area for biological
modelers. One difficulty in modeling the phenomena is the
variety of responses that occur across cell types, necessitating
cell type specific models. It is a hope of researchers that the
underlying mechanisms of the calcium release in different cell
types have broad similarity and share common biomolecular
components. This would allow structurally similar models (with
perhaps differing parameter values) to mathematically describe
the process.

Using AfCS calcium time-trace data,26 we applied the
techniques presented in this work to discriminate between two
previously published calcium response models. The calcium
time-traces were collected in triplicate at each of six extracellular
dosage levels of the ligand C5a (an anaphylatoxin known to
stimulate calcium signaling in macrophage cells). The dosage
levels were: 25, 50, 100, 250, 500, and 1000nM. For each
dosage level, we encapsulated the time-trace data with five scalar
features: initial value, final value, peak height relative to initial
value, rise time from initial value to peak, and time to fall from
the peak to 5% of the offset between the peak and the final
value. This generated a dataset comprised of 30 units, one from
each feature/dosage combination. The five features are illustrated
with a representative time-trace of the C5a-induced calcium
response in Figure 6. The model for each dataset unit was a
special case of the system model, obtained by specifying the
initial state, input dosages, and a mathematical function relating
the model predicted calcium trajectory to the relevant feature.

We now discuss our results with two previously published
calcium models. However, we need to mention that these

Figure 5. CD vs iteration count for the GRI-Mech 3.0 dataset described
in section 5.2. Figure 6. Representative time-trace of the calcium data, indicating

the five derived data features. This plot was obtained at a ligand dose
of 250 nM C5a.26
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literature models were formulated for cell types differing from
those on which the AfCS data was obtained and are simplified
representations of the actual biochemical reaction networks.
Therefore, our results should be viewed an example of our
techniques and a demonstration of their potential to answer
current biological questions rather than an endorsement or
denunciation of a particular model.

5.3.1. A Case of an InValidated Model.We consider first a
model published in 1996 by Wiesner et al.27 Their model
describes the calcium response in umbilical vein endothelial cells
to extracellular thrombin (a protease active in the blood clotting
response) concentrations. This dynamic model is presented as
eight coupled ODE’s involving 27 uncertain parameters. The
paper includes parameter values that provide an adequate fit to
the thrombin-induced calcium data considered in the report. Our
objective was to determine whether this model could explain
the AfCS macrophage calcium data after modest adjustments
in parameter values.

Initial inspection showed that dramatic changes in parameter
values would be required for this model to duplicate the initial
and final values of the AfCS calcium data. Scaling the model
states could remedy this lack of fit, so we focused our analysis
on the remaining three dynamic features: peak height, rise time,
and fall time. Therefore, we used 18 of our original 30 dataset
units (three features for six ligand doses). The final consideration
for our investigation was the choice of H, i.e., the specification
of parameter values we would admit into the analysis. Since
our goal was to make only modest adjustment to the parameter
values published in the Wiesner paper, we established H as a
hypercube centered at the published parameter values with edge
lengths varying from 20% of the center value to an order of
magnitude, as we deemed biologically appropriate.

With this setup, eight iterations of the branch and bound
procedure presented in section 4.2.2 determined a negative upper
bound on the consistency measure of this model/data/parameter
domain ensemble. The model was thus invalid, so having no
need to more accurately computeCD, we terminated the
algorithm execution. Table 3 records the refinement of the upper
bound on the consistency measure as a function of iteration
number.

5.3.2. A Case of a Validated Model.The other calcium model
we considered was presented in 2003 by Lemon et al.28 This
work was of a more theoretical nature and focused on modeling
the calcium response of generic nonexcitable cells. The model
was comprised of eight coupled ODE’s depending on 34
uncertain parameters. In the manuscript, Lemon validated the
model against published experimental data for the calcium
response of human 1321N1 astrocytoma cells induced by the
nucleotide UTP. Parameter values were either gleaned from the
literature or adjusted to fit this published dataset.

We formed a dataset coupling the Lemon model to the same
18 feature/dosage combinations of the AfCS calcium data used
with the Wiesner model. We then employed the trust-region

algorithm presented in section 4.2.3 on these dataset and found
a lower boundCD ) 0.131. Compared withCD for the Wiesner
model, which had a negative upper bound, the positive lower
bound from the trust-region algorithm demonstrates the Lemon
model better explains the data and is thus a superior candidate
by theCD selection criterion. Figure 7 displays the improvement
of CD with iteration count.

There are two probable reasons why the Lemon model scored
a higherCD than the Wiesner model. First, we suspect that the
Lemon model could more easily explain the data since it had
seven more parameters than the Wiesner model. And second,
recent experiments performed by the AfCS have shown the
importance of receptor desensitization in the calcium response.
The Lemon model incorporated receptor desensitization while
the Wiesner model did not. In a future paper, we will explore
if the addition of a receptor desensitization mechanism signifi-
cantly improves theCD of the Wiesner model.

6. Summary

We introduced a practical approach to discriminate among
models constrained by experimental data. The technique utilizes
a dataset consistency measureCD, which is a computable global
optimum that quantifies model/data mismatch. We presented
two algorithms to compute or boundCD. The first was a
subdivision approach based on the well-known branch and
bound global optimization technique. At its core, this is an
intelligent divide-and-conquer strategy. The second approach
we introduced employed a trust-region local search that culls
small subsets of the parameter domain for parameter values that
provide adequate data fit.

This consistency measure-based technique was effective on
two real-world problems of appreciable complexity, involving
tens to hundreds of model parameters. The first of these
examples was from field of combustion chemistry. We studied
this system in the past and here used it to validate our newly
developed algorithms. The second example is the cellular signal
transduction application that motivated us to to develop the
methods described herein. For this problem, we discriminated
between two published models and demonstrated that one more
faithfully reproduced experimental data. The methods are easily
parallizable, and provide a practical use of computational power
to aid both the modeler and experimentalist.
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Figure 7. CD vs iteration count for the Lemon model based calcium
dataset described in section 5.3.2. A positive value ofCD is achieved,
indicating this dataset is consistent. The Lemon model is then a superior
candidate relative to the Wiesner model, which displayed a negative
Ch D (and thus was inconsistent).
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Appendix

A.1. Relation between CD and Least Squares. In the
notation of data collaboration, the weighted least-squares
parameter estimation problem is the unconstrained optimization

wherewe (e ) 1, ...,m) is a user chosen weight.
Omitting the weights for clarity, eq A1 has a solution

equivalent to that of the constrained problem

where||δ||2 ()Σe)1,...,mδe
2]0.5) is the two-norm ofδ, the vector

of δe’s. Relating this toCD in eq 1 of the main text, when the
constraints|Me(x) - de| e ue have been scaled so that fore )
1, ...,m, the uncertaintiesue have a common magnitudeũ,

where ||δ||∞ () maxe)1,...,mδe) is the infinity-norm ofδ. The
similarity between eq A2 and eq A3 is apparentsboth drive
down a norm of the model/data mismatch vector (|Me(x) -
de|)e)1

m .
A.2. Branch and Bound Algorithm for CD. For presentation

of the branch and bound algorithm, it is convenient to form
functions capturing the constraints on the model parameters
imparted by the dataset. Let

The constraints onx implicit in the dataset then become 0e
fi(x) for i ) 1, ..., 2m. We denote by Hl and xcl a generic
rectangular subset of the parameter domain H and its corre-
sponding center point. The symbolSe

l represents a surrogate
model forMe fit over Hl. Let

As in the main text, we useCD andCh D to denote a lower and
upper bound respectively onCD.

Consider the function

Comparison with eq 1 or eq 3 of the main text showsCD )

Φ(H). We use the branch and bound algorithm described in
section A.2.1 to determineΦ(H) within a specified toleranceε.
The principle difference between our branch and bound
implementation and those commonly appearing in the literature
lies in our employment of polynomial approximationsgi

l to the
constraint functionsfi. This refinement enables the time-saving
heuristics discussed in section A.2.2. Our base algorithm
depends on two assumptions:

(a1) For i ) 1, ..., 2m, an error boundbi
l is available such

that x in Hl implies |fi(x) - gi
l(x)| e bi

l.
(a2) For i ) 1, ..., 2m, the rate of change offi (e.g., the

derivative iffi is differentiable) is bounded by a known constant
Fi, i.e., for all x,y∈H,||fi(x) - fi(y)|| e Fi||x - y||. In section
A.2.2, we propose a heuristic modification to the base algorithm
that renders the second assumption (which is required for
provable convergence) unnecessary in practice.

Proposition 1. Suppose there are functionsΦlb and Φub

defined on all rectanglesHl ⊂ H satisfying the following points:
1. For eVery Hl ⊂ H, Φlb(Hl) e Φ(Hl) e Φub(Hl).
2. For eVery ε > 0, there existsδ > 0 such that for anyHl

⊂ H, diag(Hl) < δ implies Φub(Hl) - Φlb(Hl) e ε, where
diag(Hl) denotes the length of the maximal diagonal of the
n-dimensional rectangleHl.

Then the algorithm proVided in section A.2.1 will compute
Φ(H) to any requested tolerance in finitely many iterations.

Proof. Let σj(Hl), σ(Hl) denote the length of the longest and
shortest edge of Hl, respectively. Define

The partitioning rule for rectangles in the algorithm of section
A.2.1 divides a rectangle along its longest side, so for any Hl,

The expression for the volume of ann-dimensional rectangle
together with eq A8 gives

Combining eqs A9 with the geometrical consequencexnσj(Hl)
g diag(Hl), we have

For fixedk, H is the union of the disjoint rectangles (Hl)l∈Lk, so
there exitsl′ such that vol(Hl′) e vol(H)/k, which together with
eq A10 yields

Consequently, for largek, the partition of H must include a
rectangle of small diagonal.

We now show that given some positive toleranceε, there is
some iteration countK such that UBK - LBK e ε. Invoking
condition 2 of this proposition, we may select a positiveδ such
that diag(Hl) e 2δ implies Φub(Hl) - Φlb(Hl) e ε. Choose
sufficiently largek so that

min
x∈H

[∑
e)1

m

we(Me(x) - de)
2]0.5 (A1)

min
x∈H

||δ||2

subject to: - δe e Me(x) - de e δe, e ) 1, ...,m (A2)

CD ) ũ - min
x∈H;δ

||δ||∞

subject to: -δe e Me(x) - de e δe, e ) 1, ...,m (A3)

fi(x) ) {Me(x) - de + ue for i ) 2e - 1
-Me(x) + de + ue for i ) 2e

(A4)

gi
l(x) ) {Se

l(x) - de + ue for i ) 2e - 1

-Se
l(x) + de + ue for i ) 2e

(A5)

Φ(Hl) ) max
x∈Hl

min
i)1,...,2m

fi(x) (A6)

r )
σj(H)

σ(H)
(A7)

1 e
σj(Hl)

σ(Hl)
e max{r,2} (A8)

vol(Hl) g σj(Hl)σ(Hl)
n-1 g

σj(Hl)
n

max{r,2}n-1
g

σj(Hl)
n

max{r,2}n
(A9)

diag(Hl) e xn(vol(Hl))
1/n max{r,2} (A10)

diag(Hl′) e xn(vol(H)
k )1/n

max{r,2} (A11)

xn(vol(H)
k )1/n

max{r,2} e δ (A12)
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By the argument preceding eq A11, for somel′ ∈ Lk, diag(Hl′)
e δ. Then by a simple geometric argument, the rectangle Hl′′,
one of whose halves is Hl′, must satisfy diag(Hl′′) e 2δ. Thus,
Φub(Hl′′) - Φlb(Hl′′) e ε. By the partition rule of the algorithm,
that Hl′′ was divided indicates that for someK e k, UBK )
Φub(Hl′′). Since LBk ) maxl∈Lk Φlb(Hl), it then follows that

Thus, inK or fewer iterations, the algorithm will achieve the
toleranceε and terminate.

In our base branch and bound algorithm, we employ the
bounding functions

We now show these functions fulfill the two hypotheses of
Proposition 1.

Proposition 2. The functions defined in eq A14 satisfy
condition 1 of Proposition 1.

Proof. The left inequality of condition 1 is clear, asΦ(Hl)
involves a maximization over allx ∈ H, while Φlb(Hl) considers
only the single pointxcl. To verify the right inequality of the
condition, let Hl ⊂ H be arbitrary, and takei ∈ {1, ..., 2m}. By
assumption a1,fi(xcl) e gi

l(xcl) + bi
l and by assumption a2,

maxx∈Hl fi(x) e fi(xcl) + 0.5Fi diag(Hl). Consequently, for
i ) 1, ..., 2m,

Finally we note

which completes the proof.
Proposition 3. The functions defined in eq A14 satisfy

condition 2 of Proposition 1.
Proof. From assumption a1 and the definition ofΦub,

For i ) 1, ..., 2m, assumption a2 and the observationgi
l must

approximatefi at least as well as a constant function equaling
fi(xcl), givesbi

l e 0.5Fi diag(Hl). We then have

Hence

meets the challenge of condition 2.
A.2.1. Base Branch and Bound Algorithm.

This algorithm calculates the consistency measure withinε

and can be terminated before convergence if only the sign of
the measure is of interest. As is typical of branch and bound
procedures, the worst-case performance, measured in number
of iterations required for termination, grows exponentially with
problem size. This worst-case performance is to be expected
since as mentioned in section 4.2.1, consistency measure
determination resides in a complexity class for which no known
polynomial-time algorithm exists. Despite this handicap, heu-
ristic improvements can be made to the bounding functionsΦub

andΦlb that yield substantial (although generally unprovable)
improvements in practice. The next section focuses on heuristics
that appear to work well on mechanistic modeling inspired
problems.

A.2.2. Upper Bound Refinement.In the algorithm presented,
Φub depends on the constantsFi that bound the rates of change
of the constraint functionsfi. In practice, these bounds are rarely
known, and must be estimated with generous safety factor. As
an alternative, notice assumption a1 ensures

UBK - LBK ) Φub(Hl′′) - LBK

e Φub(Hl′′) - Φlb(Hl′′) e ε (A13)

Φlb(Hl) ) min
i)1,...,2m

fi(xcl
), and

Φub(Hl) ) min
i)1,...,2m

{gi
l(xcl

) + bi
l + 0.5Fi diag(Hl)}

(A14)

max
x∈Hl

fi(x) e gi
l(xcl

) + bi
l + 0.5Fi diag(Hl) (A15)

Φ(Hl) ) max
x∈Hl

min
i)1,...,2m

fi(x) e min
i)1,...,2m

max
x∈Hl

fi(x)

e min
i)1,...,2m

{gi
l(xcl

) + bi
l + 0.5Fi diag(Hl)}

) Φub(Hl) (A16)

Φub(Hl) e min
i)1,...,2m

{fi(xcl
) + 2bi

l + 0.5Fi diag(Hl)} (A17)

Φub(Hl) e min
i)1,...,2m

{fi(xcl
) + 1.5Fi diag(Hl)}

e min
i)1,...,2m

fi(xcl
) + 1.5 diag(Hl) max

i)1,...,2m
Fi

) Φlb(Hl) + 1.5Fi diag(Hl) max
i)1,...,2m

Fi (A18)

δ ) ε

1.5maxi)1,...,2mFi
(A19)

Initialization:

Choose an objective function toleranceε > 0.

Setk r 1, (iteration index)

H1 r H,

UB1 r Φub(H1), (global upper bound)

LB1 r Φlb(H1), (global lower bound)

N r 1, (number of subdivisions)

L1 r {1}. (list of subdivisions to explore)

while UBk - LBk > ε

Pick l* ∈ Lk such that UBk ) Φub(Hl*).

Partition Hl* into HN+1 and HN+2 using a cutting plane
orthogonal to and centered about its longest edge.

Setk r k + 1,

Lk r (Lk-1\{l*}) ∪ {N + 1, N + 2}

LBk r maxl∈Lk
Φlb(Hl),

UBk r maxl∈Lk
Φub(Hl).

Delete fromLk all indicesl for which

Φub(Hl) < LBk or Φub(Hl) - Φlb(Hl) e ε.

SetN r N + 2.

end while

SetCD r LBk, Ch D r UBk.

Φ(Hl) e max
x∈Hl

min
i)1,...,2m

{gi
l(x) + bi

l} (A20)
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When the surrogate models are quadratic polynomials, an
optimization technique known as theS-procedurein the systems
and control community30 readily upper bounds the right side of
eq A20, in turn yielding a upper bound onΦ(Hl). The
S-procedure lower bound problem can be arrived via the
standard Lagrange relaxation to the right side of eq A20 together
with matrix algebra (see ref 31 or the appendix of ref 7) and
results in a convex optimization problem known as a semidefi-
nite program (SDP). An SDP in a modest number (hundreds)
of variables and constraints is a readily solved convex optimiza-
tion problem.31 The S-procedure derived upper bound is
typically a substantial improvement over theΦub and its use
eliminates our requirement of a known bound on the rate of
change of eachfi.

Improvements over the S-procedure upper bound are available
through what we broadly refer to as “higher-order relaxations”.
While a typical Lagrange relaxation of a constrained maximiza-
tion searches for nonnegative scalar multipliers, these higher-
order formulations search for nonnegative polynomial multi-
pliers, using sum-of-squares (SOS) programming. SOS pro-
gramming can also accommodate higher-order polynomial
surrogate models. Like the S-procedure, SOS problems are
convex, but often feature large numbers of variables. While
theoretically tractable, stable algorithms for solving are in their
infancy and are an area of active research.32,33 Further details
regarding SOS programming are available in Parrilo.34

Lower Bound Refinement.Consider the function

and observe

An obvious improvement over evaluatingh at the center point
xcl of Hl is to maximize h over Hl using a local search.
Alternatively, if the time required to perform a local search on
functions involving the process models (i.e.,fi) is prohibitive,
one can consider optimizations involving the surrogate models
(which have been developed for the upper bound computation).
Under the assumption|fi(x) - gi

l(x)| e bi
l for all x∈Hl, the

following two quantities lower boundΦ(Hl).

Roughly the same computational time is required to evaluate
Φlb,a or Φlb,b so we compute both and take the larger one as
the lower bound for Hl. This local search over the surrogate
models usually generates a sufficiently better bound thanΦlb

to warrant the increased computational expense.
A.3. Trust-Region Algorithm. To initialize the algorithm,

first select a cubical subset of H over which surrogate models
of the selected form well approximate the process models. This
can be accomplished by attempting fits over successively smaller
subsets of H until adequate approximations are obtained. The
algorithm can make amends if the initial subset is poorly chosen,
so this step is not critical.
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