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This paper introduces a practical data-driven method to discriminate among large-scale kinetic reaction models.
The approach centers around a computable measure of model/data mismatch. We introduce two provably
convergent algorithms that were developed to accommodate large ranges of uncertainty in the model parameters.
The algorithms are demonstrated on a simple toy example and a methane combustion model with more than
100 uncertain parameters. They are subsequently used to discriminate between two models for a contemporarily
studied biological signaling network.

1. Introduction We begin by briefly reviewing the basics of the data
collaboration method. After that we formulate the model
discrimination problem and describe the applicable mathematical
details and numerical techniques. We then present three
examples of the approach, one being a toy example and two
considering real-world problems, one from the field of combus-

The scientific method of establishing a reaction mechanism
consists of performing pertinent experiments, postulating a
reaction mechanism, and comparing the predictions of the
mathematical model describing this mechanism to the experi-
mental observations. Often, there are several competing hy- : .
potheses advanced to explain the same observed pphengme);lgqn chemlstry and the other ”O”.‘ systems plolqu. We conglude
and one is faced with the problem of discriminating among them. \i,xlt$ai>lt:erlif summary. The notations used in this work are listed

Discrimination or selection among competing reaction models )

begins with consideration of mutual consistency of the individual 2. Data Collaboration

thermochemical assignments and their harmony with the kinetic  pata collaboration is a method that unites process models
theory® One then asks how well each reaction model describes and associated admissible parameter values with experimental
giVen eXperimental observations. The usual mathematical ap'data and accompanying uncertainties. Heterogeneous data
proach to answer the latter question evokes a variation of the gptained from various sources are integrated through models
least-squares or statistical inferericé. that depend on common parameters. This ensemble is called a

Recently, we formulated amethodologylata collaboratiof dataset. Optimization driven techniques can then be applied to
aimed at the analysis of complex systems with differential- gataset analysis, including performing dataset based prediétions,
equation models and heterogeneous datasets and demonstrategtermining dataset consistencgnd the here addressed topic,
this formulation on complex reaction systems. The formulation discriminating between candidate system models.
is based on the concept of a datesehich formally integrates 2.1. DatasetAs before” we associate with each experiment
pertinent experimental data and mathematical process modelsg dataset unit,d u, M), whered is the measured value,the
One of the questions addressed was dataset consistency reported uncertainty, antl a mathematical model of the
motivating a measure that quantifies the degree to which the experiment. The true value of the experimental observable,
process model predicts the data. satisfies|d — y| < u. The modelM depends on only the

In the present study we apply the measure of consistency toparameter vector to generate a prediction fpand is often
the pr0b|em of model discrimination. PFEViOUS|y we have deve|oped from a more genera| system model by f|x|ng the
examined datasets for which a good amount of detail on the jnitial conditions and inputs to the conditions of the particular
process models was available. In the model discrimination experiment.
setting, less confidence is placed on the individual candidate |n the following, the collection of dataset units comprise the
models. This often manifests itself in large intervals of dataset D. The constantwill denote the number of units in a
uncertainty in model parameters. We demonstrate two new dataset and the subscrigwill be employed to index dataset
algorithms that allow our previously introduced techniques to ynits and their associated componentsjll signify the number
more readily accommodate such large parameter ranges.  of parameters relevant for a particular dataset. The boldface

— — — will denote a value of th@-dimensional parameter vector, and

"'Part of the special issue “David M. Golden Festschrift". theith component of this vector will be indicated &y Thus,
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TABLE 1: Notation and Symbols

Feeley et al.

symbol datatype description
Msys mathematical function candidate kinetic reaction model; has dependency on parameters and experimental conditions
e integer generic index used to reference dataset units
(de, Ue, M) dataset unit recorded information from an experimental observation
D dataset collection ah dataset units
Ye (textual) description description of the observable ofetedataset unit
Ve scalar true value of the observable of ttle dataset unit
de scalar measured data of teth dataset unit
Ue scalar upper bound on the uncertaintydef
Me mathematical function parametrized experiment model that prediftessibly derived fronMsyg
X n-dimensional vector value of the model parameters
H n-dimensional rectangle set of admissible parameter values
S mathematical function surrogate model that approximitesver H
be scalar upper bound on max|Me(X) — S(X)|
Co scalar consistency measure of the dataset D (see eq 1)
Co scalar upper bound on the consistency mea€yre
Co scalar lower bound on the consistency measiye

selection exercise, local solutions may falsely rank the candi-
dates, so when possible, global methods should be considered.

Using the dataset consistency concept introduced in section
2, we approach the discrimination problem in the following way.

x e H g/_loglel fi?ess is iankia]ddby in_izjqrporﬁting each cand_idate inba

o _ _ istinct dataset (each describing the same experiments but
de = (U = 7) = MX) = de + (U = ), fore=1,...m employing a different system model) and evaluafiagor each.

1) The largest value o€y indicates the superior candidate. As
with any ranking, if there is little difference between the top
) : | performers, prudent selection, perhaps requiring additional
the set H at which alin dataset units satisfjle(x) — del < Ue. experiments or statistical characterization of experimental errors,
The constraints in eq 1 indicate one can subt@cfrom each i needed. ThEp-based model selection approach requires only
Ue and find a parameter vector at which all model evaluations hat a dataset incorporating each candidate model be formed
match their respective data within these perturbed uncertainties.gnq that each candidate is accompanied by a set of admissible
Consequently, a dataset with nonnegaB¢eis consistent. parameter values.

The formulation of a consistency measure is not a radical A key characteristic of; is that it corresponds to a global
departure from the familiar weighted least-squares technique optimum and is computable in practice, using optimization
used to solve the inverse prOblem that fits parametrized mOde'StechniqueS we used in the past and expand in this work. For a
to data. The chief difference is Specification by the former of given hypotheticai mode|’ the Consistency measure approach
the maximum permissible error level a priori through minimizes the worst-case data/model mismatch. As such, the
Operationally, computing the consistency measure involves method is quick to point out defects (evidenced by dataset
minimizing the maximum model/data mismatch, with the inconsistency) in a hypothetical model. This comes at the
consideration that mismatch below the maximum permissible expense of high sensitivity to insufficient error bounds assigned
error level is somewhat acceptable. Section 1 of the Appendix to unsuspected outliers. The primary contribution of this work
provides a brief derivation linking the consistency measure to s not specification of an infallible objective function for model
least-squares analysis. discrimination (which is perhaps unachievable given the breadth
of applications) but instead the description of our global solution
techniques. The methods for evaluating eq 1 that we present in
the next section may be readily modified to incorporate

measurements have been performed. one is interested in a mod Iternative objective functions that are less sensitive to outliers,
P ’ enalize the number of model parameters, or have other

to ma.ke inferences from the data. In this work, we consider the circumstance driven characteristics.
situation where the researcher must select the most appropriate
system model from a collection of F:omp_eting candid_ate mod_els. 4. Solution Methods

The appropriateness of a candidate is customarily appraised
by optimizing an objective or cost function that may incorporate ~ 4.1. Dataset Creation Consider a system for which various
model/data mismatch, parsimony, model robustness, and deviaduantities of intereste (e = 1, ...,m) have been measured. Let
tion of parameters from accepted values. This general optimiza-Msys be a candidate system model that is capable, after
tion paradigm includes Weighted |east-squares approaches§pecificati0n of initial Conditions, inpUtS, and aUXiIiary Output
maximum likelihood based methods, and various statistical functions, of forming a parameter dependent prediction of each
strategies incorporating information theoretic crit@ri48? It Ye. FromMsyswe then derive an experiment modiéi for each
is well-known that standard search techniques may not discoverYe- As a brief example of the technique, suppdégs has a
the global solution to a nonlinear optimization problem. In fact, State-space representation
for nonconvex problems, verifying that a solution returned by
such a procedure is even locally optimal is computationally
complex (Horst et al? show this to be an NP-hard problem).
In parameter estimation, local solutions are often accepted
because they provide a “fit” model. However, in a model wherex signifies a particular value for the uncertain parameters

2.2. Dataset Consistency Measureln prior study’ we
introduced a consistency meas@g of a dataset

Cp = maximum value of subject to the constraints:

The dataset isonsistentf there exists a parameter vectoin

3. Model Selection and Discrimination

Given a physical system upon which various experimental

S2=1(c2) )
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andz denotes the state vector at timné&upposeY, is specified l

asthe value of 7o when the initial conditiong= 0. The model

Me is then the relation betweenand z;o when the system is Determine new Cp,
initialized with zero initial conditions. Obviously, more elaborate using @y ineq3

experimental conditions or output functions mapping the state
trajectory to a particular experimental observable are possible. |

For each of then experimental observationsle is combined Select trust-region
with the measured datd and the bound on the observational (translate or shrink)
uncertaintyu, to realize a dataset unitk, de, Ue). The behavior START
of Msysat the experimentally exercised conditions is completely r
captured by the modelM, (e = 1, ..., m). Consequently, Initial | | gi¢ surrogate models

trust—

operations on the dataset, together with information on the on the trust-region

admissible parameters by can determine the compatibility region

of Msysand the experimental data. In this work the compatibility ]

is indicated by the consistency measGrg(eq 1) of the dataset. Solve optimization
4.2. Computation of Cp. A constrained optimization with on surrogates to

linear objective and general form constraints, such as that which determine ¢,

defines the consistency measure in eq 1, resides in the (see eq 4)

computational complexity class termed NP-hard. In fact, adding

a single indefinite quadratic constraint to a linear program (an Y YES

optimization with linear objective and constraint functions) Check | o orop

results in an NP-hard optimizatidhEfficient (i.e., polynomial- convergence

time) solution methods for this class of problems remain NO

undiscovered and are widely believed to not eldsive

approach the difficult optimization of eq 1 by approximating Figure 1. Program flow of the trust-region algorithm discussed in
each process model that appears in the constraints and solvingection 4.2.3. The algorithm is found in section A.3.
a related optimization involving these approximations and
associated fitting errors. While these refinements do not alter inexpensive. Last, tractable relaxations exist for optimizations
the complexity class of the problem and incur the added involving polynomials®*
difficulty of approximation, they appear to be effective in  The approximatiors is obtained using the response surface
practice. methodology:3~16 This approach uses regression and computer
We have developed two algorithms to calculate the datasetexperiments (i.e., numerical evaluations of the dynamic experi-
consistency measure that rigorously treat the model approxima-ment modelMe(x)) at optimally selected combinations of the
tion step. The first is a branch and bound algorithm that parameter values to construct the surrogate model. The entire
computes a lower boun@p and upper boundp that satisfy set of parameter combinations is called a computer experiment
Cp < Cp = Cp. These bounds may be brought arbitrarily close design. These designs originate from a rigorous analysis of
to each other in finitely many iterations, effectively determining variance, with the objective of minimizing the number of
Cp to any required tolerance. The second algorithm implements computer experiments to be performed to gain the required
a trust-region strategy. This is a local search technique, and agnformation. The residuals from the regression are monitored
such, can only compute a lower bou@g on Cp. This lower to assess the quality of fit.
bound may be useful for comparative purposes. For example, The model fit of a polynomial surrogate is improved if the
in the biological model discrimination case of section 5.3, we degree is increased or if the approximation is sought over a
rank two models by showin@p for one model was greater  smaller parameter domain. The later is exploited by the routines

than Cp, for the other. we present in sections 4.2.2 and 4.2.3, both based on intelligently
4.2.1. Surrogate Model ApproximatioriEhe approximation  Sectioning the parameter domain to reduce the fitting error. A
to an experiment modeVl, is called asurrogate mode(the more complete discussion of the optimizations that result with

terms meta-modeland response surfacalso appear in the  this surrogate fitting procedure, their properties, and recently
literature) and is denote&. For clarity, we restrict our discovered solution techniques for higher order polynomial
discussion to quadratic surrogate models; however, the tech-surrogates, can be found in Seiler et’znd references therein.
nigues generalize to polynomial surrogates of higher order. 4.2.2. Branch and Bound Algorithm fopCBranch and bound
Employing surrogate models in the optimization routines offers is a widely used technique for global optimization over a
three benefits. First, evaluation of an ordinary differential bounded or finite domain. The method is employed in numerous
equation (ODE) based model invariably requires a computer applications, including integer and mixed-integer linear pro-
simulation that is subject to deterministic errors of roundoff and gramming and nonlinear programmitfgThe technique resolves
inexact numerical integration. While the true model behavior a difficult optimization by recursively partitioning the domain
may be smooth, this inexact evaluation introduces low-amplitude over which the problem is posed into successively smaller
high-frequency ripples in the objective and/or constraint func- disjoint subdivisions and examining related “easier” problems
tions. This “noise” cripples gradient- or Hessian-based optimiza- over each subdivision. As indicated by the name, the method
tion routines (e.g., Newton or quasi-Newton approaches). Fitting involves two basic operation8ranchingconsists of dividing
quadratic surrogate models to experiment model evaluationsmembers of the subdivision collection (which may be repre-
tends to dampen such ill behavior. The second benefit is thesented as nodes in a binary tree diagram whose root node
(relative) ease with which off-the-shelf constrained optimization corresponds to the original problem domain; see Figure 3) into
software can handle smooth algebraic functiessrrogate a larger collection of smaller subdivisiorBoundingrefers to
model evaluation and gradient assessment is computationallyperforming (presumably) tractable computations that determine
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-1.156 below the largest lower bound among the current subdivisions
cannot contain the global maximum and is discarded. This
discardation step, which is traditionally callgduning does

not change the worst-case time complexity of the algorithm.
o However, in practice it imparts considerable time savings. A
-1.25 o subdivision issolved if its upper and lower bounds are within

x a specified tolerance of one another. The procedure terminates
when all undivided subdivisions (the leaves in the tree diagram
representation) are either solved or pruned.

A detailed description of the branch and bound algorithm
and proof of convergence 10p is provided in section A.2 of
the Appendix. Here it is pertinent to mention the method requires
an upper bound on the surrogate modeling error. Specifically
for eache, we assume there is a known constbnsuch that
Maxen| Me(X) — S(X)| < be. In practice, it is not possible to
know such a bound with certainty. Howevbg can be estimated
by assessingMe. — S| both at the sample points used in the fit

O C
o o ng

xO
®

-1.35F

-1.4 " . - ; . .
1 2 3 4 5 6

Iteration
Figure 2. Convergence of the bounds @ for the toy example of
section 5.1. Six iterations were used to compDgewithin a tolerance
of 0.005. NoticeCp from the first iteration is negative, so the

hypothetical model is invalidated after one iteration.

and at any additional points generated expressly for that purpose.
This estimate can be improved with local search. Another salient

point is that the worst-case algorithm performance, measured
L1 in number of iterations required for termination, grows expo-
nentially with problem size. This handicap is expected since as
Z2 1 O) mentioned in section 4.2.1, consistency measure determination
resides in a complexity class for which no known polynomial-
03 - time algorithm exists. Potentially exponential time performance
0.5 1 2.1 is typical of branch and bound procedures and global methods
in general.
4.2.3. Trust-Region Algorithm forgCThe branch and bound
5 3 Cg%) procedure determines the consistency measure of a dataset by
first examining the entirety of the parameter domain and then
considering subdivisions. This creates practical difficulties in
the initial iterations because the polynomial surrogate models
must approximate the experiment models over the entire
(1) parameter domain. When this fit is poor (which indicates the
3 @) 3 experiment model has nonpolynomial behavior on the entire
@ (5) domain of H), determining an optimal approximation and
accurately assessing fitting error requires numerous model
evaluations. As an alternative, in this section we introduce a
D trust-region based algorithm that produces a lower bound on
6 @) (3 the consistency measure. This technique creates piecewise fits
3 @ 3 over subsets of H, analogous to the technique employed by the
oo PRISM method? This is not a global optimization method and
produces only a lower boundp.
D The dataset consistency measure has the equivalent definition
819 QO Cp = maxh(x), whereh(x) =
3 () xeH
© @ min {u,— | Mx) — dol} (3)
® ©@ e=1,..m
. go@ that_ is better_ suit(_ad_fqr_ th_e discussion Qf this section. The trust-
8 — region algorithm is initialized by selecting a rectangular subset
10 3 RO Hy of H that is sufficiently small for quadratic surrogates to
4 (6) @ accurately fit each experiment modely k$ called thetrust-
® (9) regionbecause it is the domain over which we tentatively trust
@ O the validity of the approximations. Evaluatifigin eq 3 at the

center pointx; of Hy provides an initial lower bound o@p.

Figure 3. Nodes visited by six iterations of the branch and bound
procedure as applied to the toy example of section 5.1. At algorithm Next we use a local search to compute
termination, each node has been pruned except node 11, which contains
the optimal solution. Xy = @rgmax. min - {u, — | §(x) — dgl}, (4)
XeH, e=1,..m

an interval that contains the maximum (when the method is

applied to a maximization) of the objective function over each where fore = 1, ...,m, S is a surrogate model fdvl, that is
subdivision. This interval is described by an upper bound valid over the trust-region { This provides a trial pointyy at
dyp(H)) and a lower boundd,(H)), where H denotes the which h can again be evaluated. i{xyy) > h(xc), the lower

particular subdivision. Any subdivision whose upper bound is bound onCp has improved, so His replaced with a new slightly
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larger trust-region centered aboxt, and the procedure is My (1, 25)
repeated. If not, this indicates poor surrogate approximation over
Hy, so H; is made smaller, model fits are regenerated, and a

new trial point is computed via eq 4. The schematic in Figure

1 depicts the flow of the algorithm.

Trust-region methods have enjoyed considerable research
activity; see Conn et &P for a comprehensive review. In Elster
and Neumaiéf the idea is applied to noisy objective functions.
Our implementation breaks from tradition in that the function
approximations are made using the response surface methodol-
ogy discussed in section 4.2.1 rather than from the first few
terms of the Taylor approximation. This produces approxima-
tions with larger regions of validity and correspondingly larger
trust-regions.

The primary benefit of the trust-region algorithm over off-
the-shelf constrained optimization software lies in the use of
algebraic surrogate models in place of the ODE-based experi-
ment models. By design, the surrogate models only involve
parameters that have reasonable impact on the model behavior
(so-called active variables), so the optimizations on the surrogate
models involve fewer variables and are better conditioned. Also,
the Jacobian and Hessian of the surrogate models may be il s
cheaply computed. Additionally, model approximation has a _. .
smoothing affect that alleviates the aforementioned ripples that Z;)gp%ii;' atiﬁféf()ggtstg msﬁg?ncsl (f/r"le(tgg p‘;g’?rﬁ;tgﬂds éggﬁlg’(i;jf‘“c
may be introduced into the experiment models by numerical Mi(x)| < 0.0125 for allx in H. The branch and bound algorithm

integration. While these ripples can be attenuated by stringentpartitions H into subdivisions, reducing model approximation errors.
integration tolerances, the trust-region method bypasses that

1
Iy

additional Computationaj expense. TABLE 2: Iteration Summary for Toy Branch and Bound
Example
5. Examples of Applications iteration no. node no. ®p(H) Puw(H) bi'(x1073) byl(x1073)
5.1. Toy Example.Our first case is a toy problem that is k=1 I=1 -1355 -1170 125 108
similar to example 4 from the work of Prajda@The example k=2 =2 -1305 —-1.175 8.30 7.44
features two parameters and is used to illustrate the branch and =3 —-2872 -2.806 5.89 3.89
bound algorithm folCp in a situation where parameter domain k=3 =4  —1.638 —1.558 2.50 2.82
subdivisions and surrogate models are easily visualized. Con- I=5 —-1300 -1.233  3.30 2.43
sider a system with the hypothetical differential equation model k=4 1=6 —1.278 —1.251 1.19 0.795
- 1=7 —1.510 —1.486 0.637 0.318
d_ — 3 =8 —1.469 —1.443 0538 0.474
dtz(t) N Xlz(t) ) k=5 1=9 —1.264 —1.253 0.464 0.238
o - K=6 =10 -1.364 —1.362  0.110 0.0778
From prior information it is known that 0.5 x; < 2.1. We - =11 -1256 —1.254  0.0925 0.0717

suppose three measurements have been taken on this system, . . . -
one establishing that the initial staz€0) lies in the interval u'n_lt U_2 for the_ measurement af4) is def|r12§d similarly. The
[0.3, 1.1] another determining(2) lies in [0.55, 0.65], and the ~ P"Or information is the set H= {(x, X)) €R% 0.5= x = 2.1
third finding z(4) in [0.2, 0.3]. With these data, Prajna used a and.O.ISS X = 1.3, .

novel barrier function approa¢tto show the hypothetical model Six iterations of the branch and bound algorithm presented

was invalid. We use the branch and bound algorithm introduced m_;ectltoln 4.2.2 dEtgrng;gefli:D_ for tglz_da}aset to be-1.254 f
in section 4.2.2 to determine a consistency measure for thig With a tolerance: = 9.9U5. Figure ISpays convergence o
model/data ensemble. the upper boun€p and lower boundp with iteration number.

We now assemble a dataset incorporating the hypotheticaIThese. bOl.mdS draw together as H is subdivided, rgf_le_ctlng a
model. First consider the measurementz(#). A predictive reduction in surrogate mc_)del flttl_ng error. 'I_'he .SUbd'V'S'O.n of
model for the state at time= 2 requires knowledge of both H g_enerated by the algorithm is |Ilustrate_d n F'gufe 3‘. Figure
the differential equation (eq 5) and the state at some time point.,f'h d;splayfsta graE'h _?E]/ll and th? qt:gdrgtlc approxt;:natmﬁi i
Conveniently, knowledge that the initial state lies in the interval atwas it over 1. The approximaton IS réasonably accurate,
[0.3, 1.1] is available. We incorporate this measurement as anlet visibly differs fromM.. As H is subdivided by the algorithm,

- : L : the accuracy of this approximation will improve. This is depicted
nal uncertain parameter, definirg= nd notin . - - "
8d3d|<t|c))(2a< Li fe;?:]og; ?orz?tzi é\gzlﬂ:z?tiorf(ggltﬁe ?Jn(?etlrtzgin in Table 2, which contains both the surrogate fitting error bounds

. and®,, and®d, evaluated at each subdivision. 336 evaluations
parameters andx; s then of the experiment modelgl; andM, were required to compute
) d s Cp to this tolerance. However the procedure demonstr@ted
M(x,, X,) = Z(2), subject taz(0) = x,, aZ(t) = — X, Z(t) was negative in the first iteration, which required only 48
(6) evaluations of the two models.
5.2. GRI-Mech Dataset.We demonstrate the trust-region
From this we assemble a dataset uhit= (d;, u;, M) where algorithm on a real-world example, the GRI-Mech 3.0 dat&set,
d, = 0.6,u; = 0.05, andM; is described by eq 6. The dataset taken from the field of combustion chemistry. It is a collabora-
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Figure 5. Cp vs iteration count for the GRI-Mech 3.0 dataset described Time (sec)
in section 5.2. Figure 6. Representative time-trace of the calcium data, indicating

the five derived data features. This plot was obtained at a ligand dose
tive data repository for the development of detailed kinetic ©f 250 nM C5a°
models for pollutant formation in the combustion of natural gas,
and was used in our previous studied.In the present case, Ccompare data among different laboratories). One large effort,
we use the GRI-Mech 3.0 dataset to test the trust-region the Alliance for Cellular Signaling (AfCS), is dedicated to
algorithm for Cp in a situation where we know the correct developing an extensive model of G-protein coupled receptor
answer a priori. The example provides a frame of reference from (GPCR)-mediated signal transduction in a murine macrophage
which we can assess the algorithm’s performance on the cell line2* Application of one or more natural or pharmaceutical
biological application of the next subsection that features a large receptor ligands to the outside of the cell invokes a complex
H and ODE-based experiment models. response in this chemically complex pathway.

Briefly, the GRI-Mech 3.0 dataset is composed of 77 dataset  The release of calcium from internal stores into the cytoplasm
units and 102 active parameters (see refs 6, 7, and 23 for details)is a central secondary response that is experimentally accessible
High fidelity quadratic approximations for the kinetic model at in living cells through calcium sensitive fluorescent dyes.
the conditions of each dataset unit are available, and for the Different combinations and timing of ligand application lead
purpose of this example, we treat these as the “true” modelsto different complex patterns of calcium response. The action
Me (=1, ..., 77). In a prior study examining this dataset with of calcium, which occurs in a diverse array of cell types (cardiac,
the quadratic modefsye employed this constrained optimiza- skeletal muscle, endothelial, pancreatic, etc.) is not fully
tion routine FMINCON in the MATLAB programming environ-  understood, but considered to be a ubiquitous signaling phe-
ment to determin€€p = — 0.0065 atu. = 0.08 (other means nomena? It is the subject of numerous experimental and
foundCp = — 0.0033). We validated the trust-region algorithm theoretical reports and has provided a fruitful area for biological
described in section 4.2.3 on this dataset, using linear surrogatenodelers. One difficulty in modeling the phenomena is the
models to approximate the quadratic experiment models. Thevariety of responses that occur across cell types, necessitating
resulting lower bound o1, essentially duplicated the lower  cell type specific models. It is a hope of researchers that the
bound found in our prior work by examining the quadratic underlying mechanisms of the calcium release in different cell
models directly, determinin@p = —0.0068 in 13 iterations. types have broad similarity and share common biomolecular
This value ofCp indicates that addition of 0.0068 to each components. This would allow structurally similar models (with
makes the dataset consistent. Additionally, we note that in only perhaps differing parameter values) to mathematically describe
four iterations, the algorithm improve@p from —0.288 to the process.

—0.017. Figure 5 shows how this lower bound@sincreases Using AfCS calcium time-trace datl,we applied the
with iteration count. techniques presented in this work to discriminate between two
5.3. Calcium Mobilization Model Discrimination. We now previously published calcium response models. The calcium

describe a real-world example for which we do not know the time-traces were collected in triplicate at each of six extracellular
results a priori. It is taken from a biological signaling application dosage levels of the ligand C5a (an anaphylatoxin known to
that triggered development of the methods described in this stimulate calcium signaling in macrophage cells). The dosage
work. We consider two proposed models and show that one levels were: 25, 50, 100, 250, 500, and 1000nM. For each
better reproduces the experimental data. dosage level, we encapsulated the time-trace data with five scalar
In the response to an extracellular stimulus (e.g., presencefeatures: initial value, final value, peak height relative to initial
of a signaling chemical, electric potential, or mechanical value, rise time from initial value to peak, and time to fall from
stimulation), eukaryotic cells display a variety of responses, the peak to 5% of the offset between the peak and the final
including chemotaxis (movement along the concentration gradi- value. This generated a dataset comprised of 30 units, one from
ent of a chemotactic agent), phagocytosis (engulfing foreign each feature/dosage combination. The five features are illustrated
matter), altered gene expression, and secretion. These cellulawith a representative time-trace of the C5a-induced calcium
behaviors are triggered through multilayered signaling pathways response in Figure 6. The model for each dataset unit was a
that involve a myriad of signaling molecules. Signal transduction special case of the system model, obtained by specifying the
along such pathways is a key regulatory mechanism for most initial state, input dosages, and a mathematical function relating
biological processes and is an area of active research. A growingthe model predicted calcium trajectory to the relevant feature.
body of quantitative cellular signaling data is being generated We now discuss our results with two previously published
by the biological community (though it is often difficult to cross- calcium models. However, we need to mention that these
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TABLE 3: lteration Summary for Wiesner Branch and 0.5
Bound Example
- - = p——a—a—a—a—a—8—8
iteration no. Co 0
1 1.213
2 1.1715 -0.5¢
3 1.1320
4 0.8556 Cp _,|
5 0.6289
6 0.3907
7 0.3832 -1.5¢
8 —0.1539
. . . _2_
literature models were formulated for cell types differing from
those on which the AfCS data was obtained and are simplified 25 . . ‘ ‘ ‘ .
representations of the actual biochemical reaction networks. 2 4 Itgration 8 10 12

Therefore, our results should be viewed an example of our
techniques and a demonstration of their potential to answer
current biological questions rather than an endorsement or

Figure 7. Cp vs iteration count for the Lemon model based calcium
dataset described in section 5.3.2. A positive valu€gfs achieved,
indicating this dataset is consistent. The Lemon model is then a superior

denunciation of a particular model. candidate relative to the Wiesner model, which displayed a negative
5.3.1. A Case of an lralidated Model.We consider first a Cp (and thus was inconsistent).
model published in 1996 by Wiesner et®alTheir model aigorithm presented in section 4.2.3 on these dataset and found

describes the calcium response in umbilical vein endothelial cells 5 Jower boundCp = 0.131. Compared witlEp for the Wiesner

to extracellular thrombin (a protease active in the blood clotting mgdel, which had a negative upper bound, the positive lower
response) concentrations. This dynamic model is presented a$,ound from the trust-region algorithm demonstrates the Lemon
eight coupled ODE'’s involving 27 uncertain parameters. The model better explains the data and is thus a superior candidate
paper includes parameter values that provide an adequate fit toyy the Cp, selection criterion. Figure 7 displays the improvement
the thrombin-induced calcium data considered in the report. Our of C,, with iteration count.
objective was to determine whether this model could explain  There are two probable reasons why the Lemon model scored
the AfCS macrophage calcium data after modest adjustmentsa higherCp, than the Wiesner model. First, we suspect that the
in parameter values. Lemon model could more easily explain the data since it had
Initial inspection showed that dramatic changes in parameter seven more parameters than the Wiesner model. And second,
values would be required for this model to duplicate the initial recent experiments performed by the AfCS have shown the
and final values of the AfCS calcium data. Scaling the model importance of receptor desensitization in the calcium response.
states could remedy this lack of fit, so we focused our analysis The Lemon model incorporated receptor desensitization while
on the remaining three dynamic features: peak height, rise time,the Wiesner model did not. In a future paper, we will explore
and fall time. Therefore, we used 18 of our original 30 dataset if the addition of a receptor desensitization mechanism signifi-
units (three features for six ligand doses). The final consideration cantly improves the&Cp of the Wiesner model.
for our investigation was the choice of H, i.e., the specification
of parameter values we would admit into the analysis. Since 6. Summary
our goal was to make only modest adjustment to the parameter

maanitude. as we deemed biologically appropriate optimum that quantifies model/data mismatch. We presented
9 ’ gically approp ' two algorithms to compute or boun@p. The first was a

With this setup, eight iterations of the branch and bound g ivision approach based on the well-known branch and
procedure presented in section 4.2.2 determined a negative uppeg g global optimization technique. At its core, this is an

bouno_l on the consistency measure of this_mod_el/datajpa_ramete[me"igent divide-and-conquer strategy. The second approach
domain ensemble. The model was thus invalid, so having no e introduced employed a trust-region local search that culls

need to more accurately compu®, we terminated the gy subsets of the parameter domain for parameter values that
algorithm execution. Table 3 records the refinement of the upper provide adequate data fit.

bound on the consistency measure as a function of iteration This consistency measure-based technique was effective on

number. _ _ two real-world problems of appreciable complexity, involving
5.3.2. A Case of a Validated Mod@&he other calcium model  tens to hundreds of model parameters. The first of these
we considered was presented in 2003 by Lemon &t @his examples was from field of combustion chemistry. We studied

work was of a more theoretical nature and focused on modeling thjs system in the past and here used it to validate our newly
the calcium response of generic nonexcitable cells. The modeldeveloped algorithms. The second example is the cellular signal
was comprised of eight coupled ODE’s depending on 34 transduction application that motivated us to to develop the
uncertain parameters. In the manuscript, Lemon validated themethods described herein. For this problem, we discriminated
model against published experimental data for the calcium petween two published models and demonstrated that one more
response of human 1321N1 astrocytoma cells induced by thefaithfully reproduced experimental data. The methods are easily
nucleotide UTP. Parameter values were either gleaned from thepara"izab|e, and provide a practica| use of Computationa| power
literature or adjusted to fit this publIShed dataset. to aid both the modeler and experimenta”st_

We formed a dataset coupling the Lemon model to the same
18 feature/dosage combinations of the AfCS calcium data used Acknowledgment. David Golden was one of the principal
with the Wiesner model. We then employed the trust-region investigators of the GRI-Mech project and currently is one of
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the leading figures of the Process Informatics Model (PriIMe) ®(H). We use the branch and bound algorithm described in
initiative. Many years of collaboration, discussion, and personal section A.2.1 to determin@®(H) within a specified tolerance
friendship with one of the authors (M.F.) contributed to the The principle difference between our branch and bound
philosophical aspects of scientific inference that the presentimplementation and those commonly appearing in the literature
approach pursues. The work was supported by the NSF,lies in our employment of polynomial approximatiog'sto the
Information Technology Research Program, Grant No. CTS- constraint function§. This refinement enables the time-saving
0113985, and the NSF initiative on Collaborative Research: heuristics discussed in section A.2.2. Our base algorithm

Cyberinfrastructure and Research Facilities, Grant No. CHE- depends on two assumptions:

0535542.

Appendix
A.l. Relation betweenCp and Least Squares.In the

notation of data collaboration, the weighted least-squares Pi»
parameter estimation problem is the unconstrained optimization

min[y wy(M(x) — d)*®
xeH &

(A1)

wherewe (e = 1, ...,m) is a user chosen weight.
Omitting the weights for clarity, eq Al has a solution
equivalent to that of the constrained problem

min||d]|,
XxeH

subjectto: — 5, <M (x) —d, <6, e=1,...m (A2
where||0]|2 (=Ze=1,. . m0%5) is the two-norm ofd, the vector
of d¢'s. Relating this toCp in eq 1 of the main text, when the
constraintgMe(x) — de| < ue have been scaled so that o=
1, ...,m, the uncertaintiesi. have a common magnitude

Co=0— min |9l
xeH;0

subjectto: —0,=M(X) —d, <6, e=1,...m (A3)
where [|0]]. (= max=1, nde) is the infinity-norm ofd. The
similarity between eq A2 and eq A3 is apparehbth drive
down a norm of the model/data mismatch vectdg(x) —
del)g]:J.'

A.2. Branch and Bound Algorithm for Cp. For presentation

of the branch and bound algorithm, it is convenient to form
functions capturing the constraints on the model parameters

imparted by the dataset. Let

M(X) —d.+u, fori=2e—1

fiG) = { M)+t fori=ze AV

The constraints ox implicit in the dataset then become=0
filx) for i = 1, ..., 2n. We denote by Hand X, a generic

(a1) Fori = 1, ..., 2n, an error boundy' is available such
thatx in Hy implies |fi(x) — g'(x)| < bi'.

(@2) Fori = 1, ..., 2n, the rate of change df (e.g., the
derivative iff; is differentiable) is bounded by a known constant
i.e., for allx,yeH,||fi(x) — fi(y)|| = pillx — y||. In section
A.2.2, we propose a heuristic modification to the base algorithm
that renders the second assumption (which is required for
provable convergence) unnecessary in practice.

Proposition 1. Suppose there are functiorB, and @
defined on all rectangled; C H satisfying the following points:

1. For every H € H, ®ip(Hj) = O(Hi) = Dus(H)).

2. For every € > 0, there exists) > 0 such that for anyH,

C H, diag(H)) < ¢ implies ®y(H) — Pp(H) < €, where
diag(H;) denotes the length of the maximal diagonal of the
n-dimensional rectanglél,.

Then the algorithm praded in section A.2.1 will compute
d(H) to any requested tolerance in finitely many iterations.

Proof. Let 6(H)), o(H)) denote the length of the longest and
shortest edge of Hrespectively. Define

_ ot

r= oH) (A7)

The partitioning rule for rectangles in the algorithm of section
A.2.1 divides a rectangle along its longest side, so for any H

o(H)
o(H) < maxr,2}

The expression for the volume of awdimensional rectangle
together with eq A8 gives

1<

(A8)

a(H)" a(H)"
maXr,2"*  maxr,2"

vol(H) = 5(H)a(H)" " = (A9)

Combining egs A9 with the geometrical consequedEE(Ho
> diag(H), we have
diag(H) = ﬁ(vol(H,))”n maxr,2} (A10)

For fixedk, H is the union of the disjoint rectanglesji,, so
there exitd’ such that vol(H) < vol(H)/k, which together with

rectangular subset of the parameter domain H and its corre-eq A10 yields

sponding center point. The symb8! represents a surrogate
model for Mg fit over H,. Let

S(X)—d,+u, fori=2e—1

-S/(x) + d,+ u, fori=2e (AS)

g'(x) = [

As in the main text, we us€p andCp to denote a lower and
upper bound respectively dbp.
Consider the function

®(H)= max min_ f(x)

H, i=1,...,an (A6)

Comparison with eq 1 or eq 3 of the main text shdlis =

diag(H) < ﬁ(w)”n max(r,2)

. (A11)

Consequently, for largé, the partition of H must include a
rectangle of small diagonal.

We now show that given some positive toleramcéhere is
some iteration counk such that U — LBk < e. Invoking
condition 2 of this proposition, we may select a positveuch
that diag(H) < 26 implies ®(H)) — Pp(H)) < €. Choose
sufficiently largek so that

ﬁ(\m)ﬂn maxr,2} <0

. (A12)
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By the argument preceding eq Al1l, for sothe Ly, diag(H)

< 0. Then by a simple geometric argument, the rectangle H
one of whose halves isiHHmust satisfy diag(i) < 26. Thus,
®yp(Hi) — Dp(Hiv) < e. By the partition rule of the algorithm,
that H- was divided indicates that for sonte < k, UBx =

D yy(Hi). Since LB = maxer, Pin(H)), it then follows that

UBy — LBy = ®y(H) — LBy

< Qyy(Hy) — Pp(H) < € (A13)
Thus, inK or fewer iterations, the algorithm will achieve the
tolerancee and terminate.

In our base branch and bound algorithm, we employ the
bounding functions

®py(H)= min
i=1

fi(x.), and

PyH)=__min_ { g (x;) + b + 0.50; diag(H)}

(A14)

We now show these functions fulfill the two hypotheses of
Proposition 1.

Proposition 2. The functions defined in eq Al4 satisfy
condition 1 of Proposition 1.

Proof. The left inequality of condition 1 is clear, aB(H))
involves a maximization over aXl € H, while ®,(H)) considers
only the single poink.. To verify the right inequality of the
condition, let H C H be arbitrary, and takee {1, ..., 2n}. By
assumption alfi(xs) < gi'(Xe) + bi' and by assumption a2,
maxen, fi(x) < fi(xg) + 0.50 diag(H). Consequently, for
i=1, .. 2n

maxf,(x) < g/(x,) + b + 0.50; diag(H) ~ (A15)
XeH, !

Finally we note

®H)=max min f(x)< min

max f,(x)
XeH, i=1,..., i=1,..., MmxeH

,AnXeH,
min 211{gJ(xq) +b/' + 0.50, diag(H)}

=

= ®(H) (A16)
which completes the proof.

Proposition 3. The functions defined in eq Al4 satisfy
condition 2 of Proposition 1.

Proof. From assumption al and the definition ®fp,

D (H) < _ min_ {f(x;) + 2b' + 0.50, diag(H)} (A17)
Fori = 1, ..., 2n, assumption a2 and the observatgnmust
approximatef; at least as well as a constant function equaling
fi(Xs), givesh' < 0.50; diag(H). We then have

DyH) = min zn{fi(xq) + 1.50; diag(H)}

yoeey

<

min fi(xcl)+1.5diag(l-,|) max o

= @,(H)) + 1.50; diag(H) i—]r_naXani

(A18)
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Hence

(A19)

meets the challenge of condition 2.
A.2.1. Base Branch and Bound Algorithm.

Initialization:
Choose an objective function tolerance O.
Setk—1,
H, —H,
UB; — ®,(Hy),
LBy — ®(Hy,
N1,
L, —{1}.
while UB, — LB, > ¢
Pickl* € L, such that UB= @ (H,.).

(iteration index)

(global upper bound)
(global lower bound)

(number of subdivisions)
(list of subdivisions to explore)

Partition H. into Hy,, and H,,, using a cutting plane
orthogonal to and centered about its longest edge.

Setk—k+ 1,

Le— (L M) U{N+1,N+ 2}
LB —max,, Pp(H),

UB, -— max, @ H).

Delete fromL, all indicesl for which
P@,,(H) < LBy or & (H) — @p(H) = e.
SetN—N+ 2.

end while
SetC, — LB,, C, — UB,.

This algorithm calculates the consistency measure within
and can be terminated before convergence if only the sign of
the measure is of interest. As is typical of branch and bound
procedures, the worst-case performance, measured in number
of iterations required for termination, grows exponentially with
problem size. This worst-case performance is to be expected
since as mentioned in section 4.2.1, consistency measure
determination resides in a complexity class for which no known
polynomial-time algorithm exists. Despite this handicap, heu-
ristic improvements can be made to the bounding functibgs
and @y, that yield substantial (although generally unprovable)
improvements in practice. The next section focuses on heuristics
that appear to work well on mechanistic modeling inspired
problems.

A.2.2. Upper Bound Refinemein.the algorithm presented,
. depends on the constanfsthat bound the rates of change
of the constraint function. In practice, these bounds are rarely
known, and must be estimated with generous safety factor. As
an alternative, notice assumption al ensures

®(H) < max__min {g'®)+b'}  (A20)

eH, i=1,...,2n
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When the surrogate models are quadratic polynomials, an Initialization:

optimization technique known as t&eproceduren the systems

and control communiff readily upper bounds the right side of

eq A20, in turn yielding a upper bound o@®(H). The Choose an initial trust-regionivith center poimxco.

S-procedure lower bound problem can be arrived via the

standard Lagrange relaxation to the right side of eq A20 together Select a subset growth factpr> 1.

with matrix algebra (see ref 31 or the appendix of ref 7) and  getk<—1, (iteration index)

results in a convex optimization problem known as a semidefi- .

nite program (SDP). An SDP in a modest number (hundreds) LB-1~— —, (lower bound on the consistency measure)

of variables and constraints is a readily solved convex optimiza-

tion problem3! The S-procedure derived upper bound is

typiqally a substanti_al improvement over tdg, and its use while LB, — LB, , > €

eliminates our requirement of a known bound on the rate of

change of eacff. Setyalidtry — false
Improvements over the S-procedure upper bound are available

through what we broadly refer to as “higher-order relaxations”. . )

While a typical Lagrange relaxation of a constrained maximiza- ~ Over H, approximate each mod#, with

tion searches for nonnegative scalar multipliers, these higher- a surrogate mod&.

order formulations search for nonnegative polynomial multi-

pliers, using sum-of-squares (SOS) programming. SOS pro- Setxy, — argmaxming_, {U,— ISek(x) —d,}.

gramming can also accommodate higher-order polynomial XeH,

surrogate models. Like the S-procedure, SOS problems are

convex, but often feature large numbers of variables. While SetLByy — h(xtry)

theoretically tractable, stable algorithms for solving are in their if LB. > LB

infancy and are an area of active resea@fct.Further details ry :

regarding SOS programming are available in Pafflo. Setk—k+ 1, LBy~ LBy, Xo < Xy

k

Lower Bound RefinemenConsider the function

Choose an objective function tolerance O.

LB, — h(xco) (see equation eq 3).

while validtry == false

validtry — true,
h(x)=_min _f(x) (A21) He— (X, = %, ) T vHica.

(translate and grow trust-region)
and observe else

d(H,) = )Egﬁ(h(x) and®(H) =h(x,)  (A22) Set H - 1/yH,. (shrink trust-region)
|

end if

An obvious improvement over evaluatihgat the center point end while

Xg of H; is to maximizeh over H using a local search. end while
Alternatively, if the time required to perform a local search on SetC.— LB
functions involving the process models (i.g),is prohibitive, =b k
one can consider optimizations involving the surrogate models
(which have been developed for the upper bound computation).
Under the assumptioffi(x) — g'(x)| < by for all xeH,, the (1) Golden, D. M.; Manion, J. AAdv. Chem. Kinet. Dyn1992 1,

following two quantities lower boun@(H;). L T
9 a (H) (2) Bard, Y.Nonlinear Parameter EstimatiorAcademic Press: Or-
lando, FL, 1974.
®,, (H)= maxy subjecttoy < g'(x) —b',i=1,.., (3) Akaike, H.IEEE Trans. Automat. Contrdl974 19, 716-723.
b.at™l xeH, ! e T (4) Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D.[Bayesian Data
(A23) Analysis;Chapman and Hall: London, 2003.
(5) Frenklach, M.; Packard, A.; Seiler, P. Iroceedings of the
— * * — <q! - American Control ConferencéEEE: New York, 2002; pp 41354140.
(D”O:b(H') h(x*) wherex a)r(%maxy sty =g(X)i (6) Frenklach, M.; Packard, A.; Seiler, P.; Feeley,|&. J. Chem.
I Kinet. 2004 36, 57—66.
1,...,2n (A24) (7) Feeley, R.; Seiler, P.; Packard, A.; Frenklach, MPhys. Chem.
A 2004 108,9573-9583.
. . . . 8) Burnham, K. P.; Anderson, D. Rlodel Selection and Multimodel
Roughly the same computational time is required to evaluate |nfe|€e|)qce;8pringer: New York, 2002.
D4 Or P SO We compute both and take the larger one as (9) MacKay, D. J. ClInformation Theory, Inference, and Learning
the lower bound for H This local search over the surrogate Algorithms; Cambridge University: New York, 2003.

- (10) Horst, R.; Pardalos, P. M.; Thoai, N. Yatroduction to Global
models usually generates a sufficiently better bound ®an o jiimization:Kiuwer Academic: New York, 2000.

to warrant the increased computational expense. (11) Sahni, SSIAM J. Comput1974 3, 262—279.
A.3. Trust-Region Algorithm. To initialize the algorithm, | (12 ngadi&ngficigé 2- HComputational ComplexityAddison-Wes-
2 H H ey:. Reading, s .
first select a cubical subset of H over which surrogate model; y(13) Frengl’dach' M. Modeling. Chapter 7 IBombustion Chemistry
of the selected form well approximate the process models. This Gardiner, J., Ed.; Springer-Verlag: New York, 1984.
can be accomplished by attempting fits over successively smaller  (14) Box, G. E. P.; Hunter, W. G.; Hunter, J. Statistics for
subsets of H until adequate approximations are obtained. TheExperimenters. An Introduction to Design, Data Analysis, and Model
. . s . Building, Wiley: New York, 1978.
algorithm can make amends if the initial subset is poorly chosen, ~"(15)°Box, G. E. P.; Draper, N. REmpirical Model-Building and

so this step is not critical. Response Surface®iley: New York, 1987.
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